Exogenous Thiamine Regulates Multiple Plant Immunity-Associated Pathways to Inhibit MCMV Infection

免疫 植物免疫 硫胺素 生物 细胞生物学 免疫学 免疫系统 化学 生物化学 基因 拟南芥 突变体
作者
Shuhao Sun,Xiaoyu Han,Yuyang Zhang,Lina Xie,Honglian Li,Zaifeng Fan,Qinqin Wang,Shaofeng Jia,Xue Yang,Hongxia Yuan,Yan Shi
出处
期刊:Journal of Agricultural and Food Chemistry [American Chemical Society]
被引量:1
标识
DOI:10.1021/acs.jafc.5c02214
摘要

Thiamine, also known as vitamin B1, serves as an inducer that strengthens plants and elicits defense responses to enhance resistance against pathogens. Currently, the antiviral mechanism of thiamine remains unclear. Here, we used maize chlorotic mottle virus (MCMV) as a model to elucidate the antiviral mechanism of thiamine. We found that thiamine application improved maize resistance to the MCMV. Transcriptome sequencing indicated that MCMV infection influenced the expression of thiamine synthesis pathway-related genes. Besides, MCMV P31 interacted with the key thiamine synthesis factor, ZmTHIC in cytoplasm, and blocked ZmTHIC entering into chloroplast. Using the cucumber mosaic virus (CMV) induced gene silencing system, we silenced ZmTHIC in maize, resulting in higher accumulation of MCMV compared to the control plants. LC-MS analysis revealed that both ZmTHIC silencing and MCMV infection reduced the thiamine content in maize. Thiamine treatment prior to MCMV infection enhanced plant defense responses by activating the MAPK pathway and promoting lignin synthesis in plant cell walls, ultimately inhibiting MCMV infection. Taking together, our results suggest that thiamine induced the synthesis of lignin and MAPK pathway to enhance the systemic immunity, promoting antiviral defense in maize. MCMV P31 hijacked ZmTHIC and prevented it from entering the chloroplasts, thereby inhibiting the synthesis of thiamine to dampen the synthesis of lignin and MAPK pathway to dampen the plant immunity. This research provides new insights into the antiviral mechanism of thiamine.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
Lucas应助点亮太阳的星采纳,获得10
1秒前
充电宝应助魁梧的青文采纳,获得10
1秒前
2秒前
Alpes完成签到,获得积分10
2秒前
Bdcy完成签到 ,获得积分10
2秒前
吹雪发布了新的文献求助30
3秒前
ccc完成签到 ,获得积分10
3秒前
3秒前
在座的审稿都是俺爹完成签到,获得积分10
3秒前
3秒前
WNing发布了新的文献求助10
3秒前
CodeCraft应助莫言采纳,获得10
4秒前
4秒前
4秒前
整箱发布了新的文献求助10
5秒前
贝果完成签到,获得积分10
6秒前
vertl完成签到 ,获得积分10
6秒前
6秒前
6秒前
wangyh发布了新的文献求助10
6秒前
7秒前
科研的垃圾给林韵悠扬的求助进行了留言
7秒前
张0发布了新的文献求助10
7秒前
阔达行天发布了新的文献求助10
7秒前
量子星尘发布了新的文献求助10
8秒前
1.1发布了新的文献求助10
8秒前
诗瑜发布了新的文献求助10
8秒前
9秒前
ll发布了新的文献求助10
9秒前
淡淡的归尘应助WNing采纳,获得10
9秒前
9秒前
万能图书馆应助WNing采纳,获得30
9秒前
跳跃的鱼完成签到,获得积分20
10秒前
小马甲应助顺心紫翠采纳,获得10
10秒前
木鱼浪花完成签到 ,获得积分10
10秒前
10秒前
11秒前
李爱国应助xiaofeifantasy采纳,获得10
11秒前
科研通AI2S应助苏11采纳,获得10
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Basic And Clinical Science Course 2025-2026 3000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
人脑智能与人工智能 1000
花の香りの秘密―遺伝子情報から機能性まで 800
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
Pharmacology for Chemists: Drug Discovery in Context 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5609676
求助须知:如何正确求助?哪些是违规求助? 4694236
关于积分的说明 14881785
捐赠科研通 4720035
什么是DOI,文献DOI怎么找? 2544827
邀请新用户注册赠送积分活动 1509694
关于科研通互助平台的介绍 1472981