分形
曼德布罗特集
表面光洁度
曲面(拓扑)
材料科学
表面粗糙度
分形维数
统计物理学
工作(物理)
几何学
数学分析
数学
物理
热力学
冶金
复合材料
作者
J.J. Gagnepain,C. Roques‐Carmes
出处
期刊:Wear
[Elsevier]
日期:1986-05-01
卷期号:109 (1-4): 119-126
被引量:366
标识
DOI:10.1016/0043-1648(86)90257-7
摘要
Our aim is to show that a fractal number D can be associated with any profile or cartography. Its interest lies in the fact that it conveys in a most concise form all the basic information otherwise provided by numerous parameters or criteria. Our approach, based on Mandelbrot's work, consists in processing a z(x) profile as would be done with a random motion x(t). An original approach, the “reticular cell counting” method, has been successfully applied to simulated or sampled surfaces.
科研通智能强力驱动
Strongly Powered by AbleSci AI