Multi-modal Graph Contrastive Learning for Micro-video Recommendation

模式 计算机科学 模态(人机交互) 情态动词 推荐系统 图形 人工智能 机器学习 特征学习 代表(政治) 自然语言处理 人机交互 多媒体 理论计算机科学 高分子化学 化学 社会科学 社会学 政治 政治学 法学
作者
Zixuan Yi,Xi Wang,Iadh Ounis,Craig Macdonald
标识
DOI:10.1145/3477495.3532027
摘要

Recently micro-videos have become more popular in social media platforms such as TikTok and Instagram. Engagements in these platforms are facilitated by multi-modal recommendation systems. Indeed, such multimedia content can involve diverse modalities, often represented as visual, acoustic, and textual features to the recommender model. Existing works in micro-video recommendation tend to unify the multi-modal channels, thereby treating each modality with equal importance. However, we argue that these approaches are not sufficient to encode item representations with multiple modalities, since the used methods cannot fully disentangle the users' tastes on different modalities. To tackle this problem, we propose a novel learning method named Multi-Modal Graph Contrastive Learning (MMGCL), which aims to explicitly enhance multi-modal representation learning in a self-supervised learning manner. In particular, we devise two augmentation techniques to generate the multiple views of a user/item: modality edge dropout and modality masking. Furthermore, we introduce a novel negative sampling technique that allows to learn the correlation between modalities and ensures the effective contribution of each modality. Extensive experiments conducted on two micro-video datasets demonstrate the superiority of our proposed MMGCL method over existing state-of-the-art approaches in terms of both recommendation performance and training convergence speed.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
搜集达人应助科研通管家采纳,获得10
1秒前
小蘑菇应助科研通管家采纳,获得10
1秒前
SYLH应助科研通管家采纳,获得10
1秒前
科研通AI5应助科研通管家采纳,获得10
1秒前
SYLH应助科研通管家采纳,获得10
1秒前
完美世界应助科研通管家采纳,获得10
1秒前
1秒前
小马甲应助科研通管家采纳,获得10
1秒前
斯文败类应助科研通管家采纳,获得10
1秒前
SYLH应助科研通管家采纳,获得10
2秒前
FashionBoy应助科研通管家采纳,获得10
2秒前
天天快乐应助科研通管家采纳,获得10
2秒前
2秒前
2秒前
2秒前
飞鱼完成签到,获得积分10
2秒前
2秒前
yousa发布了新的文献求助10
3秒前
Lucas应助nqterysc采纳,获得10
3秒前
chenqingsong完成签到,获得积分20
4秒前
4秒前
4秒前
XLeft发布了新的文献求助10
4秒前
科研通AI5应助小马采纳,获得30
5秒前
5秒前
殷一腾完成签到,获得积分10
5秒前
zhyi发布了新的文献求助10
5秒前
烟花应助甜甜采纳,获得10
6秒前
儒雅的夏山完成签到,获得积分10
6秒前
晚秋北斗完成签到 ,获得积分10
7秒前
7秒前
wangjianyu发布了新的文献求助10
7秒前
好好发布了新的文献求助10
10秒前
顺顺利利发布了新的文献求助10
10秒前
11秒前
周周南完成签到 ,获得积分10
12秒前
xxxx完成签到,获得积分10
12秒前
小九202301发布了新的文献求助10
12秒前
13秒前
13秒前
高分求助中
Mass producing individuality 600
Разработка метода ускоренного контроля качества электрохромных устройств 500
A Combined Chronic Toxicity and Carcinogenicity Study of ε-Polylysine in the Rat 400
Advances in Underwater Acoustics, Structural Acoustics, and Computational Methodologies 300
Treatise on Process Metallurgy Volume 3: Industrial Processes (2nd edition) 250
Between east and west transposition of cultural systems and military technology of fortified landscapes 200
Cycles analytiques complexes I: théorèmes de préparation des cycles 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3825871
求助须知:如何正确求助?哪些是违规求助? 3368162
关于积分的说明 10449560
捐赠科研通 3087618
什么是DOI,文献DOI怎么找? 1698750
邀请新用户注册赠送积分活动 816999
科研通“疑难数据库(出版商)”最低求助积分说明 769991