Consensus, cooperative learning, and flocking for multiagent predator avoidance

植绒(纹理) 计算机科学 强化学习 多智能体系统 人工智能 捕食者回避 羊群 分布式计算 捕食 捕食者 生物 古生物学 复合材料 材料科学
作者
Zachary M. Young,Hung Manh La
出处
期刊:International Journal of Advanced Robotic Systems [SAGE Publishing]
卷期号:17 (5) 被引量:16
标识
DOI:10.1177/1729881420960342
摘要

Multiagent coordination is highly desirable with many uses in a variety of tasks. In nature, the phenomenon of coordinated flocking is highly common with applications related to defending or escaping from predators. In this article, a hybrid multiagent system that integrates consensus, cooperative learning, and flocking control to determine the direction of attacking predators and learns to flock away from them in a coordinated manner is proposed. This system is entirely distributed requiring only communication between neighboring agents. The fusion of consensus and collaborative reinforcement learning allows agents to cooperatively learn in a variety of multiagent coordination tasks, but this article focuses on flocking away from attacking predators. The results of the flocking show that the agents are able to effectively flock to a target without collision with each other or obstacles. Multiple reinforcement learning methods are evaluated for the task with cooperative learning utilizing function approximation for state-space reduction performing the best. The results of the proposed consensus algorithm show that it provides quick and accurate transmission of information between agents in the flock. Simulations are conducted to show and validate the proposed hybrid system in both one and two predator environments, resulting in an efficient cooperative learning behavior. In the future, the system of using consensus to determine the state and reinforcement learning to learn the states can be applied to additional multiagent tasks.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
等待冬亦应助羽翼采纳,获得10
刚刚
强健的雪糕完成签到,获得积分10
刚刚
刚刚
1秒前
1秒前
mg应助流光采纳,获得10
1秒前
懒觉大王完成签到,获得积分10
2秒前
Somnus完成签到 ,获得积分0
3秒前
甘超旭发布了新的文献求助10
3秒前
hjr发布了新的文献求助10
6秒前
GBRUCE完成签到,获得积分10
7秒前
TTT完成签到,获得积分10
7秒前
SciGPT应助冷静青文采纳,获得10
8秒前
菠萝吹雪花啤完成签到 ,获得积分10
10秒前
彭于彦祖应助起不出名字3采纳,获得30
11秒前
13秒前
wyy完成签到 ,获得积分10
13秒前
要减肥的飞松完成签到,获得积分10
13秒前
夏静完成签到,获得积分10
13秒前
hetao发布了新的文献求助10
13秒前
黄3发布了新的文献求助10
16秒前
平淡的77完成签到,获得积分20
17秒前
Ava应助野性的晓蕾采纳,获得10
17秒前
香蕉觅云应助Chenlinhong采纳,获得10
18秒前
18秒前
19秒前
20秒前
lizzzzzz完成签到,获得积分10
21秒前
冷静青文完成签到,获得积分10
21秒前
Yancy发布了新的文献求助30
22秒前
瘦瘦妖妖完成签到,获得积分10
22秒前
cTiyAmo完成签到,获得积分10
23秒前
sui完成签到,获得积分10
23秒前
24秒前
冷静青文发布了新的文献求助10
24秒前
心若向阳完成签到,获得积分10
25秒前
谢书繁发布了新的文献求助10
25秒前
26秒前
猪猪hero应助巴啦啦采纳,获得10
26秒前
27秒前
高分求助中
Thinking Small and Large 500
Algorithmic Mathematics in Machine Learning 500
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
Deciphering Earth's History: the Practice of Stratigraphy 200
New Syntheses with Carbon Monoxide 200
Quanterion Automated Databook NPRD-2023 200
Interpretability and Explainability in AI Using Python 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3835128
求助须知:如何正确求助?哪些是违规求助? 3377624
关于积分的说明 10499544
捐赠科研通 3097120
什么是DOI,文献DOI怎么找? 1705552
邀请新用户注册赠送积分活动 820615
科研通“疑难数据库(出版商)”最低求助积分说明 772142