清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Large-Scale Atomic Simulation via Machine Learning Potentials Constructed by Global Potential Energy Surface Exploration

计算机科学 稳健性(进化) 最大值和最小值 势能面 缩放比例 不确定度量化 统计物理学 航程(航空) 算法 机器学习 化学 数学 物理 航空航天工程 量子力学 从头算 工程类 几何学 基因 数学分析 生物化学
作者
Pei‐Lin Kang,Cheng Shang,Zhi‐Pan Liu
出处
期刊:Accounts of Chemical Research [American Chemical Society]
卷期号:53 (10): 2119-2129 被引量:103
标识
DOI:10.1021/acs.accounts.0c00472
摘要

ConspectusAtomic simulations based on quantum mechanics (QM) calculations have entered into the tool box of chemists over the past few decades, facilitating an understanding of a wide range of chemistry problems, from structure characterization to reactivity determination. Due to the poor scaling and high computational cost intrinsic to QM calculations, one has to either sacrifice accuracy or time when performing large-scale atomic simulations. The battle to find a better compromise between accuracy and speed has been central to the development of new theoretical methods.The recent advances of machine-learning (ML)-based large-scale atomic simulations has shown great promise to the benefit of many branches of chemistry. Instead of solving the Schrödinger equation directly, ML-based simulations rely on a large data set of accurate potential energy surfaces (PESs) and complex numerical models to predict the total energy. These simulations feature both a high speed and a high accuracy for computing large systems. Due to the lack of a physical foundation in numerical models, ML models are often frustrated in their predictivity and robustness, which are key to applications. Focusing on these concerns, here we overview the recent advances in ML methodologies for atomic simulations on three key aspects. Namely, the generation of a representative data set, the extensity of ML models, and the continuity of data representation. While global optimization methods are the natural choice for building a representative data set, the stochastic surface walking method is shown to provide the desired PES sampling for both minima and transition regions on the PES. The current ML models generally utilize local geometrical descriptors as an input and consider the total energy as the sum of atomic energies. There are many flavors of data descriptors and ML models, but the applications for material and reaction predictions are still limited, not least because of the difficulty to train the associated vast global data sets. We show that our recently designed power-type structure descriptors together with a feed-forward neural network (NN) model are compatible with highly complex global PES data, which has led to a large family of global NN (G-NN) potentials.Two recent applications of G-NN potentials in material and reaction simulations are selected to illustrate how ML-based atomic simulations can help the discovery of new materials and reactions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
勤劳的颤完成签到 ,获得积分10
1秒前
yml完成签到 ,获得积分10
54秒前
破晓完成签到,获得积分10
1分钟前
张wx_100完成签到,获得积分10
1分钟前
Dryang完成签到 ,获得积分10
2分钟前
ZHANG完成签到 ,获得积分10
2分钟前
lovelife完成签到,获得积分10
2分钟前
flysky120完成签到,获得积分10
3分钟前
恒牙完成签到 ,获得积分10
4分钟前
沧海一粟米完成签到 ,获得积分10
5分钟前
叁月二完成签到 ,获得积分10
5分钟前
前行的灿完成签到 ,获得积分10
5分钟前
思源应助贲如音采纳,获得10
5分钟前
胡国伦完成签到 ,获得积分10
5分钟前
5分钟前
贲如音发布了新的文献求助10
6分钟前
呆萌冰彤完成签到 ,获得积分10
6分钟前
Luna爱科研完成签到 ,获得积分10
6分钟前
Alisha完成签到,获得积分10
6分钟前
夏日香气完成签到 ,获得积分10
6分钟前
四氟硼酸盐完成签到 ,获得积分10
7分钟前
小二郎应助xun采纳,获得10
7分钟前
空白格完成签到 ,获得积分10
7分钟前
juan完成签到 ,获得积分10
8分钟前
bubuyier完成签到 ,获得积分10
8分钟前
朴素海亦完成签到 ,获得积分10
8分钟前
mss12138完成签到 ,获得积分10
8分钟前
8分钟前
xun发布了新的文献求助10
8分钟前
净心完成签到 ,获得积分10
8分钟前
8分钟前
传奇3应助xun采纳,获得10
9分钟前
all发布了新的文献求助10
9分钟前
9分钟前
9分钟前
华仔应助all采纳,获得10
9分钟前
all完成签到,获得积分10
9分钟前
四氟硼酸盐关注了科研通微信公众号
10分钟前
攀攀完成签到 ,获得积分10
10分钟前
范ER完成签到 ,获得积分10
11分钟前
高分求助中
Rapid Review of Electrodiagnostic and Neuromuscular Medicine: A Must-Have Reference for Neurologists and Physiatrists 1000
Bond and Bond Option Pricing based on the Current Term Structure 500
求中国石油大学(北京)图书馆的硕士论文,作者董晨,十年前搞太赫兹的 500
Narrative Method and Narrative form in Masaccio's Tribute Money 500
基于3um sOl硅光平台的集成发射芯片关键器件研究 500
Educational Research: Planning, Conducting, and Evaluating Quantitative and Qualitative Research 460
Development in Infancy 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4787443
求助须知:如何正确求助?哪些是违规求助? 4112997
关于积分的说明 12723715
捐赠科研通 3838728
什么是DOI,文献DOI怎么找? 2116344
邀请新用户注册赠送积分活动 1139126
关于科研通互助平台的介绍 1026159