Ensemble deep learning in bioinformatics

集成学习 计算机科学 背景(考古学) 灵活性(工程) 机器学习 深度学习 人工智能 适应性 数据科学 生物信息学 生物 数学 统计 古生物学 生态学
作者
Yue Cao,Thomas A. Geddes,Jean Yang,Pengyi Yang
出处
期刊:Nature Machine Intelligence [Nature Portfolio]
卷期号:2 (9): 500-508 被引量:235
标识
DOI:10.1038/s42256-020-0217-y
摘要

The remarkable flexibility and adaptability of ensemble methods and deep learning models have led to the proliferation of their application in bioinformatics research. Traditionally, these two machine learning techniques have largely been treated as independent methodologies in bioinformatics applications. However, the recent emergence of ensemble deep learning—wherein the two machine learning techniques are combined to achieve synergistic improvements in model accuracy, stability and reproducibility—has prompted a new wave of research and application. Here, we share recent key developments in ensemble deep learning and look at how their contribution has benefited a wide range of bioinformatics research from basic sequence analysis to systems biology. While the application of ensemble deep learning in bioinformatics is diverse and multifaceted, we identify and discuss the common challenges and opportunities in the context of bioinformatics research. We hope this Review Article will bring together the broader community of machine learning researchers, bioinformaticians and biologists to foster future research and development in ensemble deep learning, and inspire novel bioinformatics applications that are unattainable by traditional methods. Recent developments in machine learning have seen the merging of ensemble and deep learning techniques. The authors review advances in ensemble deep learning methods and their applications in bioinformatics, and discuss the challenges and opportunities going forward.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
霸气的梦露完成签到,获得积分10
1秒前
1秒前
2秒前
3秒前
斯文败类应助单纯契采纳,获得10
3秒前
3秒前
朴素的红牛完成签到,获得积分20
4秒前
英姑应助热心玉兰采纳,获得10
4秒前
sheep完成签到,获得积分10
5秒前
麦冬粑粑完成签到,获得积分10
7秒前
科研通AI5应助Wu采纳,获得10
7秒前
7秒前
科研通AI5应助garrick采纳,获得30
7秒前
kp完成签到,获得积分10
8秒前
细心蚂蚁发布了新的文献求助10
8秒前
9秒前
受伤幻桃发布了新的文献求助10
10秒前
Orange应助ytx采纳,获得10
10秒前
爆米花应助shine采纳,获得10
10秒前
islazheng发布了新的文献求助10
13秒前
小橘子完成签到 ,获得积分10
13秒前
笨笨芯发布了新的文献求助10
13秒前
fantec完成签到,获得积分10
14秒前
15秒前
最最最完成签到,获得积分20
16秒前
时光里完成签到,获得积分10
16秒前
17秒前
顾矜应助阿九采纳,获得10
18秒前
18秒前
18秒前
科研通AI5应助QiaoHL采纳,获得200
19秒前
20秒前
香蕉觅云应助武雨寒采纳,获得10
20秒前
21秒前
2568269431发布了新的文献求助10
22秒前
单纯契发布了新的文献求助10
22秒前
韩凡发布了新的文献求助10
23秒前
李健应助易水采纳,获得10
23秒前
attitude完成签到,获得积分10
24秒前
24秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
Optical and electric properties of monocrystalline synthetic diamond irradiated by neutrons 320
共融服務學習指南 300
Essentials of Pharmacoeconomics: Health Economics and Outcomes Research 3rd Edition. by Karen Rascati 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3800658
求助须知:如何正确求助?哪些是违规求助? 3346007
关于积分的说明 10328098
捐赠科研通 3062460
什么是DOI,文献DOI怎么找? 1680999
邀请新用户注册赠送积分活动 807337
科研通“疑难数据库(出版商)”最低求助积分说明 763627