Monitoring black tea fermentation quality by intelligent sensors: Comparison of image, e-nose and data fusion

人工智能 电子鼻 偏最小二乘回归 主成分分析 模式识别(心理学) 支持向量机 数学 随机森林 计算机科学 统计
作者
Qiaoyi Zhou,Zhenhua Dai,Feihu Song,Zhenfeng Li,Chunfang Song,Caijin Ling
出处
期刊:Food bioscience [Elsevier]
卷期号:52: 102454-102454 被引量:29
标识
DOI:10.1016/j.fbio.2023.102454
摘要

To scientifically and objectively monitor the fermentation quality of black tea, a computer vision system (CVS) and electronic nose (e-nose) were employed to analyze the black tea image and odor eigenvalues of Yinghong No. 9 black tea. First, the variation trends of tea polyphenols, volatile substances, image eigenvalues and odor eigenvalues with the extension of fermentation time were analyzed, and the fermentation process was categorized into three stages for classification. Second, principal component analysis (PCA) was employed on the image and odor eigenvalues obtained by CVS and e-nose. Partial least squares discriminant analysis (PLS-DA) was performed on 117 volatile components, and 51 differential volatiles were screened out based on variable importance in projection (VIP ≥1) and one-way analysis of variance (P < 0.05), including geraniol, linalool, nerolidol, and α-ionone. Then, image features and odor features are fused by using a data fusion strategy. Finally, the image, smell and fusion information were combined with random forest (RF), K-nearest neighbor (KNN) and support vector machine (SVM) to establish the classification models of different fermentation stages and to compare them. The results show that the feature-level fusion strategy integrating the SVM was the most efficient approach, with classification accuracy rates of 100% for the training sets and 95.6% for the testing sets. The performance of Support Vector Regression (SVR) prediction models for tea polyphenol content based on feature-level fusion data outperformed data-level models (Rc, RMSEC, Rp and RMSEP of 0.96, 0.48 mg/g, 0.94, 0.6 mg/g).
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
一行发布了新的文献求助10
刚刚
脑洞疼应助杨旭采纳,获得10
刚刚
童年的秋千完成签到,获得积分10
1秒前
1秒前
1秒前
2秒前
2秒前
3秒前
3秒前
5秒前
传奇3应助AixLeft采纳,获得10
5秒前
Darcy发布了新的文献求助10
6秒前
我是老大应助Tcell采纳,获得100
6秒前
6秒前
美好斓发布了新的文献求助10
6秒前
7秒前
王富贵发布了新的文献求助10
7秒前
子子完成签到,获得积分10
9秒前
科研通AI6应助su采纳,获得10
9秒前
核桃发布了新的文献求助10
10秒前
10秒前
Owen应助老实新筠采纳,获得10
10秒前
快乐小分队完成签到,获得积分20
10秒前
11秒前
Leo关闭了Leo文献求助
11秒前
失眠的血茗完成签到,获得积分10
11秒前
疯狂的炒米粉完成签到,获得积分10
11秒前
12秒前
汉堡包应助fantasy采纳,获得10
12秒前
chen987应助阿柒采纳,获得10
12秒前
Soo发布了新的文献求助10
13秒前
过时的夏寒完成签到,获得积分10
14秒前
量子星尘发布了新的文献求助10
15秒前
15秒前
小羽完成签到,获得积分10
15秒前
15秒前
水水的完成签到 ,获得积分10
16秒前
16秒前
17秒前
赘婿应助he采纳,获得10
17秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to Early Childhood Education 1000
List of 1,091 Public Pension Profiles by Region 921
Aerospace Standards Index - 2025 800
Identifying dimensions of interest to support learning in disengaged students: the MINE project 800
流动的新传统主义与新生代农民工的劳动力再生产模式变迁 500
Historical Dictionary of British Intelligence (2014 / 2nd EDITION!) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5430904
求助须知:如何正确求助?哪些是违规求助? 4543966
关于积分的说明 14190032
捐赠科研通 4462380
什么是DOI,文献DOI怎么找? 2446515
邀请新用户注册赠送积分活动 1437982
关于科研通互助平台的介绍 1414566