Gastric Cancer Assembloids Derived from Patient‐Derived Xenografts: A Preclinical Model for Therapeutic Drug Screening

癌症 医学 药品 药理学 肿瘤科 内科学
作者
Xinxin Xu,Yunhe Gao,Jianli Dai,Qianqian Wang,Zixuan Wang,Wenquan Liang,Qing Zhang,Wenbo Ma,Zibo Liu,Hao Luo,Zhi Qiao,Li Li,Zijian Wang,Lin Chen,Yanmei Zhang,Zhuo Xiong
出处
期刊:Small methods [Wiley]
卷期号:8 (9): e2400204-e2400204 被引量:3
标识
DOI:10.1002/smtd.202400204
摘要

Abstract The construction of reliable preclinical models is crucial for understanding the molecular mechanisms involved in gastric cancer and for advancing precision medicine. Currently, existing in vitro tumor models often do not accurately replicate the human gastric cancer environment and are unsuitable for high‐throughput therapeutic drug screening. In this study, droplet microfluidic technology is employed to create novel gastric cancer assembloids by encapsulating patient‐derived xenograft gastric cancer cells and patient stromal cells in Gelatin methacryloyl (GelMA)‐Gelatin‐Matrigel microgels. The usage of GelMA‐Gelatin‐Matrigel composite hydrogel effectively alleviated cell aggregation and sedimentation during the assembly process, allowing for the handling of large volumes of cell‐laden hydrogel and the uniform generation of assembloids in a high‐throughput manner. Notably, the patient‐derived xenograft assembloids exhibited high consistency with primary tumors at both transcriptomic and histological levels, and can be efficiently scaled up for preclinical drug screening efforts. Furthermore, the drug screening results clearly demonstrated that the in vitro assembloid model closely mirrored in vivo drug responses. Thus, these findings suggest that gastric cancer assembloids, which effectively replicate the in vivo tumor microenvironment, show promise for enabling more precise high‐throughput drug screening and predicting the clinical outcomes of various drugs.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
情怀应助nessa采纳,获得10
1秒前
2秒前
wffff发布了新的文献求助10
2秒前
lc发布了新的文献求助10
4秒前
CAO完成签到 ,获得积分10
5秒前
脑洞疼应助sweet采纳,获得10
5秒前
haha完成签到,获得积分10
5秒前
5秒前
5秒前
小巧冬萱发布了新的文献求助10
5秒前
wen完成签到,获得积分20
6秒前
Akim应助阿正嗖啪采纳,获得10
6秒前
6秒前
科研通AI6应助CHEN采纳,获得10
6秒前
NexusExplorer应助黎L采纳,获得10
6秒前
乐乐应助zttr1采纳,获得10
7秒前
fansaiwang完成签到,获得积分10
7秒前
洪东智完成签到,获得积分10
7秒前
Hello应助路绪震采纳,获得10
8秒前
8秒前
8秒前
9秒前
小白完成签到,获得积分10
9秒前
狂野雨兰发布了新的文献求助10
10秒前
hh发布了新的文献求助10
10秒前
CarryLJR完成签到,获得积分10
12秒前
Dean应助Michael采纳,获得110
12秒前
Sunday发布了新的文献求助10
12秒前
14秒前
15秒前
Owen应助小可采纳,获得10
16秒前
鳗鱼芷巧发布了新的文献求助10
16秒前
占易形完成签到,获得积分10
18秒前
嘟嘟嘟嘟完成签到 ,获得积分10
18秒前
李健的小迷弟应助lmc采纳,获得10
18秒前
wffff完成签到,获得积分10
19秒前
19秒前
19秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
小学科学课程与教学 500
Study and Interlaboratory Validation of Simultaneous LC-MS/MS Method for Food Allergens Using Model Processed Foods 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5643294
求助须知:如何正确求助?哪些是违规求助? 4760914
关于积分的说明 15020418
捐赠科研通 4801640
什么是DOI,文献DOI怎么找? 2566917
邀请新用户注册赠送积分活动 1524783
关于科研通互助平台的介绍 1484355