Neural-network–based algorithm for the inverse problem of measuring K-shell ionization cross-sections of Si induced by 3–25 keV electrons and 4.5–9 keV positrons using the thick-target method

电离 正规化(语言学) 电子 玻恩近似 物理 正电子 航程(航空) 横截面(物理) 反向 人工神经网络 计算物理学 原子物理学 算法 计算机科学 核物理学 材料科学 离子 数学 人工智能 几何学 量子力学 复合材料
作者
Y. D. Li,Y. Wu,Chenn‐Jung Huang,Z. H. Liu,Mingqiang Pan
出处
期刊:EPL [IOP Publishing]
卷期号:143 (6): 65003-65003
标识
DOI:10.1209/0295-5075/acf60b
摘要

Abstract In this study, a neural network method is proposed for solving the inverse problem in the measurement of inner-shell ionization cross-sections using the thick-target method. It was applied to calculate the K -shell ionization cross-section of silicon (Si) from positron impacts in the energy range from 4.5 to 9 keV, using a Monte Carlo simulation program called PENELOPE to construct a comprehensive characteristic X-ray yield and cross-section database, serving as a foundation for training the neural network. The experimental values are compared with those obtained using regularization, yield differential, and distorted-wave Born approximation (DWBA) theoretical models. Our findings reveal that the cross-section results obtained from all three algorithms are in good agreement with the theoretical DWBA values within the error range. Moreover, our study highlights the superiority of the neural network algorithm in solving ill-posed problems, compared with traditional regularization algorithms and the yield differential method. Furthermore, we re-analyse the experimental data of electron-induced ionization cross-sections on a pure thick Si target in the energy range from 3 to 25 keV, which were originally obtained by Zhu et al . who used a regularization method. The reprocessed cross-sections obtained in this study exhibit good agreement with the reported results within the error range. To the best of our knowledge, this is the first experimental report of the K -shell ionization cross-sections of Si from positron impact.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
AN驳回了铭逸应助
1秒前
dd完成签到,获得积分20
1秒前
1秒前
我是老大应助XUANZHEXIA采纳,获得10
2秒前
代代代代完成签到,获得积分10
4秒前
4秒前
4秒前
5秒前
6秒前
6秒前
6秒前
7秒前
9秒前
kk发布了新的文献求助10
9秒前
vampire完成签到,获得积分10
10秒前
代代代发布了新的文献求助10
10秒前
雾影觅光完成签到,获得积分10
10秒前
11秒前
量子星尘发布了新的文献求助10
11秒前
11秒前
大个应助不安笑白采纳,获得10
11秒前
11秒前
化简为繁发布了新的文献求助10
11秒前
0043发布了新的文献求助10
12秒前
13秒前
Hello应助啊啊啊采纳,获得10
13秒前
宋秋莲发布了新的文献求助10
14秒前
15秒前
小马甲应助任伟超采纳,获得10
15秒前
16秒前
leemiii完成签到 ,获得积分10
16秒前
CipherSage应助坤坤采纳,获得10
17秒前
啦啦啦完成签到,获得积分10
17秒前
18秒前
euruss发布了新的文献求助30
18秒前
研友_J8DO1Z完成签到,获得积分10
18秒前
DittO完成签到,获得积分20
18秒前
苗条的钻石应助菠萝啤采纳,获得10
19秒前
20秒前
20秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
Item Response Theory 1000
Introduction to Early Childhood Education 1000
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 921
Identifying dimensions of interest to support learning in disengaged students: the MINE project 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5428950
求助须知:如何正确求助?哪些是违规求助? 4542495
关于积分的说明 14181096
捐赠科研通 4460186
什么是DOI,文献DOI怎么找? 2445634
邀请新用户注册赠送积分活动 1436824
关于科研通互助平台的介绍 1414018