亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Rolling Element Bearing Fault Diagnosis Using Improved Manifold Learning

非线性降维 降维 马氏距离 歧管对齐 歧管(流体力学) 维数之咒 滚动轴承 人工智能 断层(地质) 分类器(UML) 计算机科学 欧几里德距离 方位(导航) 特征向量 k-最近邻算法 模式识别(心理学) 算法 工程类 地震学 地质学 振动 物理 机械工程 量子力学
作者
Beibei Yao,Zhen Peng,Lifeng Wu,Yong Guan
出处
期刊:IEEE Access [Institute of Electrical and Electronics Engineers]
卷期号:5: 6027-6035 被引量:46
标识
DOI:10.1109/access.2017.2693379
摘要

Fault feature can be extracted by traditional manifold learning algorithms, which construct neighborhood graphs by Euclidean distance (ED). It is difficult to get an excellent dimensionality reduction result when processed data has strong correlations. In order to improve the effect of dimensionality reduction and increase accuracy of bearing fault diagnosis in mechanical systems, an improved manifold learning method based on Mahalanobis distance (MD) is proposed. In this paper, we use time-domain analysis and frequency-domain analysis to construct high-dimensional feature vectors in the first step. Then, MD is used to replace ED in neighborhood construction of manifold learning. After using the improved manifold learning method, low-dimensional feature vectors can be extracted. Finally, fault diagnosis of rolling element bearing can be made by applying the K-nearest neighbor classifier. In part of experiment, to verify the efficiency of the improved manifold learning methods, artificial data sets and rolling element bearing fault data are adopted. The experimental comparison results of the improved manifold learning algorithm and the traditional algorithm prove that the proposed method is more effective in rolling element bearing fault diagnosis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
30秒前
量子星尘发布了新的文献求助150
1分钟前
AZN完成签到 ,获得积分10
3分钟前
xun完成签到,获得积分20
3分钟前
5分钟前
年年有余完成签到,获得积分10
5分钟前
邱医生发布了新的文献求助10
5分钟前
烟花应助科研通管家采纳,获得10
5分钟前
5分钟前
所所应助科研通管家采纳,获得10
5分钟前
所所应助科研通管家采纳,获得10
5分钟前
完美世界应助科研通管家采纳,获得10
5分钟前
大个应助科研通管家采纳,获得10
5分钟前
NexusExplorer应助科研通管家采纳,获得10
5分钟前
顾矜应助科研通管家采纳,获得10
5分钟前
上官若男应助科研通管家采纳,获得10
5分钟前
Ava应助科研通管家采纳,获得10
5分钟前
丘比特应助科研通管家采纳,获得10
5分钟前
Jasper应助科研通管家采纳,获得10
5分钟前
充电宝应助科研通管家采纳,获得10
5分钟前
科研通AI5应助邱医生采纳,获得10
5分钟前
SciGPT应助科研通管家采纳,获得10
5分钟前
酷波er应助科研通管家采纳,获得10
5分钟前
搜集达人应助科研通管家采纳,获得10
5分钟前
Ava应助科研通管家采纳,获得10
5分钟前
科研通AI5应助科研通管家采纳,获得10
5分钟前
5分钟前
邱医生完成签到,获得积分20
5分钟前
yanjun完成签到,获得积分20
6分钟前
6分钟前
休斯顿完成签到,获得积分10
7分钟前
飞天大南瓜完成签到,获得积分10
7分钟前
搭碰完成签到,获得积分0
8分钟前
仁者无惧完成签到 ,获得积分10
8分钟前
8分钟前
cristiano007发布了新的文献求助10
8分钟前
8分钟前
王元发布了新的文献求助10
8分钟前
kbcbwb2002完成签到,获得积分10
8分钟前
王元完成签到,获得积分10
9分钟前
高分求助中
Comprehensive Toxicology Fourth Edition 24000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
TOWARD A HISTORY OF THE PALEOZOIC ASTEROIDEA (ECHINODERMATA) 1000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
World Nuclear Fuel Report: Global Scenarios for Demand and Supply Availability 2025-2040 800
The Social Work Ethics Casebook(2nd,Frederic G. R) 600
Handbook of Social and Emotional Learning 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5116899
求助须知:如何正确求助?哪些是违规求助? 4323400
关于积分的说明 13470251
捐赠科研通 4155916
什么是DOI,文献DOI怎么找? 2277614
邀请新用户注册赠送积分活动 1279411
关于科研通互助平台的介绍 1217545