材料科学
纳米复合材料
摩擦学
纳米压痕
溅射沉积
拉曼光谱
无定形碳
碳纤维
复合材料
涂层
无定形固体
溅射
薄膜
复合数
纳米技术
结晶学
光学
化学
物理
作者
Quanshun Luo,Shun Cai Wang,Zhaoxia Zhou,Linghao Chen
摘要
Grown by reactive unbalanced magnetron sputtering in a mixed N2 and CH4 gaseous medium, heterogeneous nanocomposite coatings in the Ti-Al-V-N-C system show extraordinarily excellent tribological performance of coated machining tools. Using analytical high resolution TEM, EELS, FEG-SEM, XRD, and Raman spectroscopy, this paper reports detailed structural and chemical characterization of the coatings grown at various CH4: N2 ratios. Meanwhile, the mechanical and tribological properties were also measured, including hardness, Young’s modulus, residual stress and the dry-sliding friction and wear at varying environmental humidity. When CH4 gas was introduced in the deposition, the structure of the coatings has been found to experience a change from nano-scale TiAlN-VN multilayer architecture to a complex mixture of columnar grains of nc-TiAlV(N,C)/a-C nanocomposites and inter-column network of sp2-type amorphous carbon. Carbon incorporation and segregation also shows remarkable influence on the columnar growth model by leading to finer grain size. As compared to the carbon-free nitride coating, the nanocomposite coatings showed substantially reduced residual stress owing to the free-carbon precipitation, whereas the coatings maintained comparable hardness to the carbon-free TiAlN/VN. Their tribological properties were found to be strongly dependent on the environment. In humid air at RH > 30%, the coatings showed low friction coefficient less than 0.4 and extremely low wear rate at a scale of ~10-17 m3N-1m-1.
科研通智能强力驱动
Strongly Powered by AbleSci AI