Financing mode and scheme decision support for large urban rail transit projects: a revised case-based reasoning approach

方案(数学) 城市轨道交通 模式(计算机接口) 过境(卫星) 模式选择 轨道交通 运输工程 计算机科学 业务 财务 运筹学 工程类 公共交通 数学 操作系统 数学分析
作者
Xian Zheng,Yiling Huang,Yan Liu,Zhong Zhang,Yongkui Li,Hang Yan
出处
期刊:Engineering, Construction and Architectural Management [Emerald (MCB UP)]
卷期号:32 (12): 8494-8523 被引量:1
标识
DOI:10.1108/ecam-03-2023-0202
摘要

Purpose As the complex influencing factors for financing decisions and limited information at the early project stage often render inappropriate financing mode and scheme (FMS) selection in the large-scale urban rail transit (URT) field, this study aims to identify the multiple influencing factors and establish a revised case-based reasoning (CBR) model by drawing on experience in historical URT projects to provide support for effective FMS decisions. Design/methodology/approach Our research proposes a two-phase, five-step CBR model for FMS decisions. We first establish a case database containing 116 large-scale URT projects and a multi-attribute FMS indicator system. Meanwhile, grey relational analysis (GRA), the entropy-revised G1 method and the time decay function have been employed to precisely revise the simple CBR model for selecting high-similarity cases. Then, the revised CBR model is verified by nine large-scale URT projects and a demonstration project to prove its decision accuracy and effectiveness. Findings We construct a similarity case indicator system of large-scale URT projects with 11 indicators across three attributes, in which local government fiscal pressure is considered the most influential indicator for FMS decision-making. Through the verification with typical URT projects, the accuracy of our revised CBR model can reach 89%. The identified high-similarity cases have been confirmed to be effective for recommending appropriate financing schemes matched with a specific financing mode. Originality/value This is the first study employing the CBR model, an artificial intelligence approach that simulates human cognition by learning from similar past experiences and cases to enhance the accuracy and reliability of FMS decisions. Based on the characteristics of the URT projects, we revise the CBR model in the case retrieval process to achieve a higher accuracy. The revised CBR model utilizes expert experience and historical information to provide a valuable auxiliary tool for guiding the relevant government departments in making systematic decisions at the early project stage with limited and ambiguous project information.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
XXXX完成签到,获得积分10
刚刚
卡其嘛亮完成签到,获得积分10
1秒前
烟花应助故意的小熊猫采纳,获得10
1秒前
wenff发布了新的文献求助10
1秒前
2秒前
在水一方应助天真玉米采纳,获得10
2秒前
lsybf完成签到,获得积分10
2秒前
杨乃彬完成签到,获得积分10
3秒前
包容的睫毛膏完成签到,获得积分10
3秒前
Zqs完成签到,获得积分10
3秒前
隐形曼青应助吴丹璇采纳,获得10
4秒前
白面包不吃鱼完成签到 ,获得积分10
4秒前
4秒前
sy发布了新的文献求助10
4秒前
llw关闭了llw文献求助
4秒前
乐乐应助狂野忆文采纳,获得10
5秒前
charles完成签到,获得积分10
5秒前
魔幻的觅珍完成签到,获得积分10
5秒前
xiongqi完成签到 ,获得积分10
5秒前
胖心怡完成签到,获得积分10
5秒前
5秒前
6秒前
zzzzz完成签到,获得积分20
6秒前
6秒前
7秒前
丘比特应助sdsd采纳,获得10
7秒前
山茶发布了新的文献求助10
7秒前
7秒前
FZUer完成签到,获得积分10
7秒前
linggle发布了新的文献求助10
7秒前
8秒前
sos完成签到,获得积分10
8秒前
8秒前
英俊的铭应助pp采纳,获得10
8秒前
9秒前
梦话完成签到,获得积分20
9秒前
9秒前
9秒前
哈基米应助eagle采纳,获得20
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1001
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
Haematolymphoid Tumours (Part A and Part B, WHO Classification of Tumours, 5th Edition, Volume 11) 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5471114
求助须知:如何正确求助?哪些是违规求助? 4573904
关于积分的说明 14341960
捐赠科研通 4501121
什么是DOI,文献DOI怎么找? 2466168
邀请新用户注册赠送积分活动 1454377
关于科研通互助平台的介绍 1428975