Ecology and environment predict spatially stratified risk of highly pathogenic avian influenza in wild birds across Europe

H5N1亚型流感病毒 高致病性 生态学 地理 禽流感病毒 生物 病毒学 病毒
作者
Sarah Hayes,Joe Hilton,Joaquin Mould-Quevedo,Christl A. Donnelly,Matthew Baylis,Liam Brierley
标识
DOI:10.1101/2024.07.17.603912
摘要

Abstract Highly pathogenic avian influenza (HPAI) represents a threat to animal health, human health, and economic prosperity, with the ongoing outbreak in wild and domestic animals since 2021 being the largest on record. This outbreak is associated with the 2.3.4.4b clade of influenza A, and it is as yet unclear what factors have contributed to its spread at the continental scale. In this study we use Bayesian additive regression trees, a machine learning method designed for probabilistic modelling of complex nonlinear phenomena, to construct species distribution models for HPAI presence across Europe. Using these models we identify factors driving the geospatial distribution of cases and project the distribution of risk across Europe. Our models are stratified by time to capture both seasonal changes in risk patterns and shifts in HPAI epidemiology associated with the introduction of the 2.3.4.4b clade. While previous studies have aimed to predict HPAI presence from physical geography, here we explicitly consider the impact of wild bird ecology by including in our model estimates of bird species richness, abundance of specific high-risk bird taxa, and “species-trait abundance indices” describing the total abundance of species with high-risk behavioural and/or dietary traits. Our projections point to a shift in concentration of risk towards cold, low-lying regions of coastal northwest Europe associated with 2.3.4.4b, with the margins of uncertainty extending that risk further into central and eastern Europe. In coastal northwest Europe specifically, we predict a persistence of high risk throughout the year. Methodologically, we demonstrate that while the majority of variation in risk can be explained by climate and other aspects of physical geography, the addition of ecological covariates represents a valuable refinement to species distribution models of HPAI.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
lulu完成签到,获得积分10
1秒前
晨晨CC完成签到,获得积分10
1秒前
酷炫的雪兰完成签到 ,获得积分10
1秒前
2秒前
白青完成签到,获得积分10
3秒前
Hindiii完成签到,获得积分10
3秒前
可爱的函函应助sw98318采纳,获得10
4秒前
小苹果汤完成签到,获得积分10
4秒前
ffbgbd发布了新的文献求助10
4秒前
4秒前
务实水蓝完成签到 ,获得积分10
5秒前
sun完成签到,获得积分10
5秒前
5秒前
充电宝应助慕航采纳,获得10
5秒前
复杂的夜香完成签到 ,获得积分10
6秒前
夏天不回来完成签到,获得积分10
6秒前
uu关注了科研通微信公众号
7秒前
飞飞完成签到,获得积分10
7秒前
苗苗发布了新的文献求助10
9秒前
121完成签到,获得积分10
9秒前
10秒前
黑色幽默发布了新的文献求助10
10秒前
zSmart发布了新的文献求助10
10秒前
10秒前
dg_fisher发布了新的文献求助10
10秒前
oO完成签到 ,获得积分10
11秒前
TK完成签到 ,获得积分0
11秒前
12秒前
自觉草莓完成签到,获得积分10
12秒前
鸢尾完成签到 ,获得积分10
12秒前
冰魂应助羽言采纳,获得20
12秒前
zz关注了科研通微信公众号
12秒前
152完成签到 ,获得积分10
13秒前
华仔应助健壮的翠安采纳,获得10
13秒前
13秒前
李健的粉丝团团长应助ma采纳,获得10
14秒前
14秒前
一休发布了新的文献求助10
14秒前
15秒前
15秒前
高分求助中
Thinking Small and Large 500
Algorithmic Mathematics in Machine Learning 500
Handbook of Innovations in Political Psychology 400
Mapping the Stars: Celebrity, Metonymy, and the Networked Politics of Identity 400
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
Engineering the boosting of the magnetic Purcell factor with a composite structure based on nanodisk and ring resonators 240
Study of enhancing employee engagement at workplace by adopting internet of things 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3837906
求助须知:如何正确求助?哪些是违规求助? 3379958
关于积分的说明 10511877
捐赠科研通 3099610
什么是DOI,文献DOI怎么找? 1707177
邀请新用户注册赠送积分活动 821447
科研通“疑难数据库(出版商)”最低求助积分说明 772617