Seeking False Hard Negatives for Graph Contrastive Learning

计算机科学 人工智能 消极的 模式识别(心理学) 自然语言处理 光学 物理
作者
Xin Liu,Biao Qian,Haipeng Liu,Dan Guo,Yang Wang,Meng Wang
出处
期刊:IEEE Transactions on Circuits and Systems for Video Technology [Institute of Electrical and Electronics Engineers]
卷期号:34 (8): 7454-7466 被引量:1
标识
DOI:10.1109/tcsvt.2024.3370149
摘要

Graph Contrastive Learning (GCL) has achieved great success in self-supervised representation learning throughout positive and negative pairs based on graph neural networks (GNNs), where one critical issue lies in how to handle the false hard negatives that share the large similarity to the same referenced class as the anchor, which is critical to message passing of GNNs to exploit the graph structure. However, the existing arts either mistakenly identify or miss the false hard negatives, hence resulting into poor node representation. Building on this, there are several crucial bottlenecks — Where do false hard negatives exist upon the anchor? How to well seek false hard negatives? Whether are more false hard negatives better? To answer these questions, in this paper, we propose a novel Locally Weighted Graph Contrastive Learning method, named LocWGCL, while revealing that false hard negatives are primarily distributed in the first-order and second-order neighborhoods of the anchor. Benefiting from the tightness between the first-order nodes and the anchor, representation similarity is calculated to select false hard negatives. For the second-order case, false hard negatives are identified, such that they share the similar passed message with the anchor over the common first-order nodes, along with the large similarity. Upon the seeking process, we devise a weighted strategy to false hard negatives for better node representation. Empirical studies verify the advantages of LocWGCL over the state-of-the-arts on six benchmarks.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
CCL完成签到,获得积分10
刚刚
yuiip完成签到 ,获得积分10
1秒前
所所应助可口可乐采纳,获得10
3秒前
make217完成签到 ,获得积分10
3秒前
我是大兴发布了新的文献求助10
4秒前
小岚花完成签到 ,获得积分10
4秒前
红薯干完成签到,获得积分10
4秒前
5秒前
故酒应助斯文的傲珊采纳,获得10
6秒前
CodeCraft应助醉熏的丹秋采纳,获得10
6秒前
沫荔完成签到 ,获得积分10
8秒前
8秒前
修辞完成签到 ,获得积分10
8秒前
8秒前
tt发布了新的文献求助10
9秒前
10秒前
我是大兴完成签到,获得积分10
11秒前
天天开心完成签到 ,获得积分10
12秒前
RussHu完成签到,获得积分10
12秒前
千千完成签到,获得积分10
12秒前
12秒前
Serein发布了新的文献求助10
13秒前
万能图书馆应助个性湘采纳,获得50
14秒前
yud完成签到 ,获得积分10
15秒前
可口可乐发布了新的文献求助10
15秒前
17秒前
虹虹完成签到 ,获得积分10
18秒前
夏夜完成签到 ,获得积分10
18秒前
坚定的小蘑菇完成签到 ,获得积分10
19秒前
zzz完成签到,获得积分10
20秒前
GTRK完成签到,获得积分10
20秒前
21秒前
千陽完成签到 ,获得积分10
22秒前
zhiwei完成签到 ,获得积分10
22秒前
Orchid发布了新的文献求助10
23秒前
24秒前
天璇完成签到,获得积分10
24秒前
满天星辰独览完成签到 ,获得积分10
24秒前
洋葱完成签到,获得积分10
25秒前
25秒前
高分求助中
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
Optical and electric properties of monocrystalline synthetic diamond irradiated by neutrons 320
共融服務學習指南 300
Essentials of Pharmacoeconomics: Health Economics and Outcomes Research 3rd Edition. by Karen Rascati 300
Peking Blues // Liao San 300
Political Ideologies Their Origins and Impact 13 edition 240
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3801065
求助须知:如何正确求助?哪些是违规求助? 3346581
关于积分的说明 10329750
捐赠科研通 3063074
什么是DOI,文献DOI怎么找? 1681341
邀请新用户注册赠送积分活动 807491
科研通“疑难数据库(出版商)”最低求助积分说明 763726