Seeking False Hard Negatives for Graph Contrastive Learning

计算机科学 人工智能 消极的 模式识别(心理学) 自然语言处理 光学 物理
作者
Xin Liu,Biao Qian,Haipeng Liu,Dan Guo,Yang Wang,Meng Wang
出处
期刊:IEEE Transactions on Circuits and Systems for Video Technology [Institute of Electrical and Electronics Engineers]
卷期号:34 (8): 7454-7466 被引量:1
标识
DOI:10.1109/tcsvt.2024.3370149
摘要

Graph Contrastive Learning (GCL) has achieved great success in self-supervised representation learning throughout positive and negative pairs based on graph neural networks (GNNs), where one critical issue lies in how to handle the false hard negatives that share the large similarity to the same referenced class as the anchor, which is critical to message passing of GNNs to exploit the graph structure. However, the existing arts either mistakenly identify or miss the false hard negatives, hence resulting into poor node representation. Building on this, there are several crucial bottlenecks — Where do false hard negatives exist upon the anchor? How to well seek false hard negatives? Whether are more false hard negatives better? To answer these questions, in this paper, we propose a novel Locally Weighted Graph Contrastive Learning method, named LocWGCL, while revealing that false hard negatives are primarily distributed in the first-order and second-order neighborhoods of the anchor. Benefiting from the tightness between the first-order nodes and the anchor, representation similarity is calculated to select false hard negatives. For the second-order case, false hard negatives are identified, such that they share the similar passed message with the anchor over the common first-order nodes, along with the large similarity. Upon the seeking process, we devise a weighted strategy to false hard negatives for better node representation. Empirical studies verify the advantages of LocWGCL over the state-of-the-arts on six benchmarks.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
林子发布了新的文献求助10
1秒前
1秒前
yu_z完成签到 ,获得积分10
1秒前
摆烂完成签到,获得积分10
1秒前
1秒前
orixero应助月亮夏的夏采纳,获得10
2秒前
123发布了新的文献求助10
2秒前
2秒前
cjn完成签到,获得积分20
2秒前
量子星尘发布了新的文献求助10
3秒前
3秒前
3秒前
所所应助111采纳,获得10
3秒前
赘婿应助yee采纳,获得10
3秒前
Akim应助杨佳采纳,获得10
3秒前
乐乐应助杨佳采纳,获得10
3秒前
4秒前
申申完成签到,获得积分10
4秒前
4秒前
曹牧之发布了新的文献求助10
4秒前
牛雨桐发布了新的文献求助10
4秒前
ilotus完成签到,获得积分20
4秒前
5秒前
王三发布了新的文献求助10
5秒前
王山而发布了新的文献求助10
5秒前
5秒前
5秒前
王十三完成签到 ,获得积分10
6秒前
二毛发布了新的文献求助10
6秒前
kiuikiu完成签到,获得积分10
6秒前
朱芷君发布了新的文献求助10
7秒前
申申发布了新的文献求助10
7秒前
饭特稀发布了新的文献求助10
7秒前
7秒前
小龙人完成签到,获得积分10
7秒前
笨笨伟泽完成签到,获得积分10
7秒前
咩咩发布了新的文献求助30
8秒前
8秒前
8秒前
高分求助中
Aerospace Standards Index - 2025 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 1000
Teaching Language in Context (Third Edition) 1000
List of 1,091 Public Pension Profiles by Region 961
流动的新传统主义与新生代农民工的劳动力再生产模式变迁 500
Historical Dictionary of British Intelligence (2014 / 2nd EDITION!) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5446737
求助须知:如何正确求助?哪些是违规求助? 4555835
关于积分的说明 14253656
捐赠科研通 4478299
什么是DOI,文献DOI怎么找? 2453571
邀请新用户注册赠送积分活动 1444383
关于科研通互助平台的介绍 1420495