萎蔫
机器学习
农业工程
经济作物
计算机科学
作物
人工智能
环境科学
农学
工程类
农业
生态学
生物
作者
Paula Jimena Ramos-Giraldo,Chris Reberg‐Horton,Anna M. Locke,Steven B. Mirsky,Edgar Lobatón
出处
期刊:IT Professional
[IEEE Computer Society]
日期:2020-05-01
卷期号:22 (3): 27-29
被引量:34
标识
DOI:10.1109/mitp.2020.2986103
摘要
The real-time detection of drought stress has major implications for preventing cash crop yield loss due to variable weather conditions and ongoing climate change. The most widely used indicator of drought sensitivity/tolerance in corn and soybean is the presence or absence of leaf wilting during periods of water stress. We develop a low-cost automated drought detection system using computer vision coupled with machine learning (ML) algorithms that document the drought response in corn and soybeans field crops. Using ML, we predict the drought status of crop plants with more than 80% accuracy relative to expert-derived visual drought ratings.
科研通智能强力驱动
Strongly Powered by AbleSci AI