A CNN-Transformer Hybrid Recognition Approach for sEMG-Based Dynamic Gesture Prediction

人工智能 计算机科学 特征提取 模式识别(心理学) 卷积神经网络 手势识别 光谱图 语音识别 变压器 计算机视觉 手势 工程类 电气工程 电压
作者
Yanhong Liu,Xingyu Li,Lei Yang,Gui‐Bin Bian,Hongnian Yu
出处
期刊:IEEE Transactions on Instrumentation and Measurement [Institute of Electrical and Electronics Engineers]
卷期号:72: 1-16 被引量:20
标识
DOI:10.1109/tim.2023.3273651
摘要

As a unique physiological electrical signal in the human body, surface electromyography (sEMG) signals always include human movement intention and muscle state. Through the collection of sEMG signals, different gestures can be effectively recognized. At present, the convolutional neural network (CNN) has been widely applied to different gesture recognition systems. However, due to its inherent limitations in global context feature extraction, it exists a certain shortcoming on high-precision prediction tasks. To solve this issue, a CNN-transformer hybrid recognition approach is proposed for high-precision dynamic gesture prediction. In addition, the continuous wavelet transform (CWT) is proposed for to acquire the time-frequency maps. To realize effective feature representation of local features from the time-frequency maps, an attention fusion block (AFB) is proposed to build the deep CNN network branch to effectively extract key channel information and spatial information from local features. Faced with the inherent limitations in global context feature extraction of CNNs, a transformer network branch is proposed to model the global relationship between pixels, called convolution and transformer (CAT) network branch. In addition, a multi-scale feature attention block (MFA) is proposed for effective feature aggregation of local features and global contexts by learning adaptive multi-scale features and suppressing irrelevant scale information. The experimental results on the established multi-channel sEMG signal time-frequency map dataset show that the proposed CNN transformer hybrid recognition network has competitive recognition performance compared with other state-of-the-art recognition networks, and the average recognition speed of each spectrogram on the test set is only 14.7ms. The proposed network can effectively improve network performance and identification efficiency.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
黎小乐子发布了新的文献求助10
刚刚
欢呼的帽子完成签到,获得积分10
1秒前
猪猪hero应助d研究怎么生ac采纳,获得10
1秒前
Eris完成签到,获得积分10
1秒前
赵ben山发布了新的文献求助10
2秒前
慕青应助爱听歌代萱采纳,获得10
2秒前
2秒前
佳思思完成签到,获得积分10
2秒前
A阿澍完成签到,获得积分10
2秒前
Qiao发布了新的文献求助10
3秒前
3秒前
Rocsoar完成签到,获得积分10
3秒前
SciGPT应助福宝采纳,获得10
4秒前
jyh发布了新的文献求助10
4秒前
5秒前
慕容松发布了新的文献求助10
5秒前
感动的白梅完成签到,获得积分10
6秒前
范范完成签到,获得积分10
6秒前
7秒前
恬恬完成签到,获得积分10
7秒前
aaaa完成签到,获得积分10
8秒前
吱吱熊sama完成签到,获得积分10
8秒前
花花发布了新的文献求助10
8秒前
Rocsoar发布了新的文献求助10
8秒前
8秒前
黎小乐子完成签到,获得积分10
8秒前
bellapp完成签到 ,获得积分10
9秒前
叮当完成签到,获得积分10
9秒前
11秒前
miawei完成签到,获得积分10
11秒前
11秒前
大模型应助aaa采纳,获得10
11秒前
痞老板发布了新的文献求助10
12秒前
狂野的河马完成签到,获得积分10
12秒前
勤奋的松鼠完成签到,获得积分10
13秒前
王晓蕾发布了新的文献求助10
13秒前
猫好好完成签到,获得积分10
13秒前
bkagyin应助103921wjk采纳,获得10
14秒前
JJy完成签到 ,获得积分10
14秒前
mof发布了新的文献求助10
14秒前
高分求助中
Thinking Small and Large 500
Algorithmic Mathematics in Machine Learning 500
Handbook of Innovations in Political Psychology 400
Mapping the Stars: Celebrity, Metonymy, and the Networked Politics of Identity 400
Visceral obesity is associated with clinical and inflammatory features of asthma: A prospective cohort study 300
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
Engineering the boosting of the magnetic Purcell factor with a composite structure based on nanodisk and ring resonators 240
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3838008
求助须知:如何正确求助?哪些是违规求助? 3380253
关于积分的说明 10513110
捐赠科研通 3099862
什么是DOI,文献DOI怎么找? 1707244
邀请新用户注册赠送积分活动 821558
科研通“疑难数据库(出版商)”最低求助积分说明 772744