Sensing Users’ Emotional Intelligence in Social Networks

情商 心理学 人际交往 感知 社交网络(社会语言学) 面(心理学) 人际关系 社会心理学 身份(音乐) 计算机科学 社会化媒体 人格 万维网 五大性格特征 物理 神经科学 声学
作者
Xiangyu Wei,Guangquan Xu,Hao Wang,Yongzhong He,Zhen Han,Wei Wang
出处
期刊:IEEE Transactions on Computational Social Systems [Institute of Electrical and Electronics Engineers]
卷期号:7 (1): 103-112 被引量:14
标识
DOI:10.1109/tcss.2019.2944687
摘要

Social networks have integrated into the daily lives of most people in the way of interactions and of lifestyles. The users' identity, relationships, or other characteristics can be explored from the social networking data, in order to provide personalized services to the users. In this article, we focus on predicting the user's emotional intelligence (EI) based on social networking data. As an essential facet of users' psychological characteristics, EI plays an important role on well-being, interpersonal relationships, and overall success in people's life. Perception of EI contributes to predicting one's behavior or group behavior. Most existing work on predicting people's EI is based on questionnaires that may collect dishonest answers or unconscientious responses, thus leading in potentially inaccurate prediction results. In this article, we are motivated to propose EI prediction models based on the sentiment analysis of social networking data. The models are represented by four dimensions, including self-awareness, self-regulation, self-motivation, and social relationships. The EI of a user is then measured by four numerical values or the sum of them. In the experiments, we predict the EIs of over a hundred thousand users based on one of the largest social networks of China, Weibo. The predicting results demonstrate the effectiveness of our models. The results show that the distribution of the four EI's dimensions of users is roughly normal. The results also indicate that EI scores of females are generally higher than males' EI scores. This is consistent with previous findings. In addition, the four dimensions of EI are correlated. We finally analyze the advantages and the disadvantages of our models in predicting users' EI with social networking data.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
欣喜书易完成签到 ,获得积分10
4秒前
街道办事部完成签到,获得积分10
5秒前
饱满蚂蚁完成签到,获得积分10
5秒前
6秒前
6rkuttsmdt完成签到,获得积分10
7秒前
斯文败类应助YY采纳,获得10
7秒前
QuJiahao发布了新的文献求助10
12秒前
mr_beard完成签到 ,获得积分10
18秒前
20秒前
古古怪界丶黑大帅完成签到,获得积分10
20秒前
22秒前
初余发布了新的文献求助10
26秒前
小白应助cx111采纳,获得10
29秒前
科研通AI5应助QuJiahao采纳,获得10
30秒前
L_完成签到,获得积分10
31秒前
31秒前
lifeup发布了新的文献求助10
32秒前
慕新完成签到,获得积分0
33秒前
三虎科研发布了新的文献求助10
36秒前
1021完成签到,获得积分10
37秒前
38秒前
39秒前
自由橘子完成签到 ,获得积分10
39秒前
不发一区不改名完成签到 ,获得积分10
39秒前
40秒前
42秒前
42秒前
Xieyusen发布了新的文献求助10
43秒前
默默的映天给默默的映天的求助进行了留言
43秒前
44秒前
shihangZhang发布了新的文献求助10
44秒前
44秒前
kevinwang发布了新的文献求助10
45秒前
赘婿应助科研通管家采纳,获得10
45秒前
Jasper应助科研通管家采纳,获得10
45秒前
科研通AI5应助科研通管家采纳,获得10
45秒前
科研通AI2S应助科研通管家采纳,获得10
45秒前
所所应助科研通管家采纳,获得10
45秒前
桐桐应助科研通管家采纳,获得10
45秒前
科研通AI5应助自信筮采纳,获得10
45秒前
高分求助中
Assessing and Diagnosing Young Children with Neurodevelopmental Disorders (2nd Edition) 700
The Elgar Companion to Consumer Behaviour and the Sustainable Development Goals 540
The Martian climate revisited: atmosphere and environment of a desert planet 500
Images that translate 500
Transnational East Asian Studies 400
Towards a spatial history of contemporary art in China 400
Mapping the Stars: Celebrity, Metonymy, and the Networked Politics of Identity 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3843815
求助须知:如何正确求助?哪些是违规求助? 3386203
关于积分的说明 10544092
捐赠科研通 3106883
什么是DOI,文献DOI怎么找? 1711245
邀请新用户注册赠送积分活动 824031
科研通“疑难数据库(出版商)”最低求助积分说明 774409