Diversity-Representativeness Replay and Knowledge Alignment for Lifelong Vehicle Re-identification

计算机科学 代表性启发 鉴定(生物学) 多样性(政治) 人机交互 人工智能 数据科学 心理学 社会心理学 植物 社会学 人类学 生物
作者
Anqi Cao,Zhijing Wan,Xiao Wang,Wei Liu,Wei Wang,Zheng Wang,Xin Xu
出处
期刊:ACM Transactions on Multimedia Computing, Communications, and Applications [Association for Computing Machinery]
标识
DOI:10.1145/3702998
摘要

Lifelong vehicle re-identification (LVReID) aims to match a target vehicle across multiple cameras, considering non-stationary and continuous data streams, which fits the needs of the practical application better than traditional vehicle re-identification. Nonetheless, this area has received relatively little attention. Recently, methods for lifelong person re-identification (LPReID) have been emerging, with replay-based methods achieving the best results by storing a small number of instances from previous tasks for retraining, thus effectively reducing catastrophic forgetting. However, these methods cannot be directly applied to LVReID because they fail to simultaneously consider the diversity and representativeness of replayed data, resulting in biases between the subset stored in the memory buffer and the original data. They randomly sample classes, which may not adequately represent the distribution of the original data. Additionally, these methods fail to consider the rich variation in instances of the same vehicle class due to factors such as vehicle orientation and lighting conditions. Therefore, preserving more informative classes and instances for replay helps maintain information from previous tasks and may mitigate the model’s forgetting of old knowledge. In view of this, we propose a novel Diversity-Representativeness Dual-Stage Sampling Replay (DDSR) strategy for LVReID that constructs an effective memory buffer through two stages, i.e. , Cluster-Centric Class Selection and Diverse Instance Mining. Specifically, we first perform class-level sampling based on density in the clustered class-centered feature space and then further mine the diverse, high-quality instances within the selected classes. In addition, we introduce Maximum Mean Discrepancy loss to align the feature distribution between replay data and the new arrivals and apply L2 regularisation in the parameter space to facilitate knowledge transfer, thus enhancing the model’s generalization ability to new tasks. Extensive experiments demonstrate effective improvements of our method compared to current state-of-the-art lifelong ReID methods on the VeRi-776, VehicleID, and VERI-Wild datasets.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
紫不语发布了新的文献求助30
1秒前
axin完成签到,获得积分20
1秒前
yyybxqmz发布了新的文献求助10
2秒前
2秒前
飲料大隊長完成签到,获得积分10
3秒前
赘婿应助没有花活儿采纳,获得10
4秒前
南巷酒肆完成签到,获得积分10
4秒前
axin发布了新的文献求助10
5秒前
zzuwxj发布了新的文献求助10
5秒前
wanci应助迷糊的七七采纳,获得10
8秒前
8秒前
Answer完成签到,获得积分10
11秒前
迷糊完成签到,获得积分10
13秒前
刘鑫宇完成签到,获得积分10
14秒前
chen发布了新的文献求助10
14秒前
水蜜桃幽灵完成签到,获得积分10
15秒前
罐装冰块发布了新的文献求助10
16秒前
上官若男应助小咩采纳,获得10
17秒前
一粟完成签到,获得积分10
19秒前
21秒前
科研通AI2S应助聪明摩托采纳,获得10
22秒前
22秒前
栗栗栗知完成签到,获得积分10
24秒前
无花果应助lijinyu采纳,获得10
25秒前
FashionBoy应助刘鑫宇采纳,获得10
25秒前
子木完成签到,获得积分10
26秒前
yyybxqmz完成签到,获得积分10
26秒前
26秒前
ww发布了新的文献求助10
27秒前
孙宇发布了新的文献求助20
30秒前
科研通AI5应助凤凰涅槃采纳,获得10
30秒前
小巧的可仁完成签到 ,获得积分10
32秒前
cxlhzq发布了新的文献求助10
32秒前
搜集达人应助zzuwxj采纳,获得10
33秒前
37秒前
任性迎南完成签到,获得积分10
37秒前
Dejavu完成签到 ,获得积分10
37秒前
陈昊发布了新的文献求助10
38秒前
毅诚菌完成签到,获得积分10
38秒前
不戴眼镜的眼镜王蛇完成签到,获得积分10
41秒前
高分求助中
Mass producing individuality 600
Разработка метода ускоренного контроля качества электрохромных устройств 500
A Combined Chronic Toxicity and Carcinogenicity Study of ε-Polylysine in the Rat 400
Advances in Underwater Acoustics, Structural Acoustics, and Computational Methodologies 300
Graphene Quantum Dots (GQDs): Advances in Research and Applications 200
Advanced Introduction to US Civil Liberties 200
Effect of deresuscitation management vs. usual care on ventilator-free days in patients with abdominal septic shock 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3825251
求助须知:如何正确求助?哪些是违规求助? 3367521
关于积分的说明 10446344
捐赠科研通 3086892
什么是DOI,文献DOI怎么找? 1698353
邀请新用户注册赠送积分活动 816713
科研通“疑难数据库(出版商)”最低求助积分说明 769937