已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Diversity-Representativeness Replay and Knowledge Alignment for Lifelong Vehicle Re-identification

计算机科学 代表性启发 鉴定(生物学) 多样性(政治) 人机交互 人工智能 数据科学 心理学 人类学 植物 社会心理学 生物 社会学
作者
Anqi Cao,Zhijing Wan,Xiao Wang,Wei Liu,Wei Wang,Zheng Wang,Xin Xu
出处
期刊:ACM Transactions on Multimedia Computing, Communications, and Applications [Association for Computing Machinery]
标识
DOI:10.1145/3702998
摘要

Lifelong vehicle re-identification (LVReID) aims to match a target vehicle across multiple cameras, considering non-stationary and continuous data streams, which fits the needs of the practical application better than traditional vehicle re-identification. Nonetheless, this area has received relatively little attention. Recently, methods for lifelong person re-identification (LPReID) have been emerging, with replay-based methods achieving the best results by storing a small number of instances from previous tasks for retraining, thus effectively reducing catastrophic forgetting. However, these methods cannot be directly applied to LVReID because they fail to simultaneously consider the diversity and representativeness of replayed data, resulting in biases between the subset stored in the memory buffer and the original data. They randomly sample classes, which may not adequately represent the distribution of the original data. Additionally, these methods fail to consider the rich variation in instances of the same vehicle class due to factors such as vehicle orientation and lighting conditions. Therefore, preserving more informative classes and instances for replay helps maintain information from previous tasks and may mitigate the model’s forgetting of old knowledge. In view of this, we propose a novel Diversity-Representativeness Dual-Stage Sampling Replay (DDSR) strategy for LVReID that constructs an effective memory buffer through two stages, i.e. , Cluster-Centric Class Selection and Diverse Instance Mining. Specifically, we first perform class-level sampling based on density in the clustered class-centered feature space and then further mine the diverse, high-quality instances within the selected classes. In addition, we introduce Maximum Mean Discrepancy loss to align the feature distribution between replay data and the new arrivals and apply L2 regularisation in the parameter space to facilitate knowledge transfer, thus enhancing the model’s generalization ability to new tasks. Extensive experiments demonstrate effective improvements of our method compared to current state-of-the-art lifelong ReID methods on the VeRi-776, VehicleID, and VERI-Wild datasets.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
伊力扎提发布了新的文献求助10
刚刚
董睿陶关注了科研通微信公众号
刚刚
超表面发布了新的文献求助10
1秒前
笨蛋琪露诺完成签到,获得积分10
1秒前
3秒前
jasonjiang完成签到 ,获得积分0
3秒前
4秒前
4秒前
4秒前
5秒前
now完成签到,获得积分10
5秒前
wdcemail完成签到,获得积分10
6秒前
科研通AI5应助emperor采纳,获得10
7秒前
WPF关闭了WPF文献求助
7秒前
风清扬发布了新的文献求助10
7秒前
7秒前
zhushenglin完成签到,获得积分10
8秒前
Jokerhubo发布了新的文献求助10
9秒前
满意紫丝发布了新的文献求助10
9秒前
YX完成签到,获得积分10
9秒前
9秒前
郭宇完成签到 ,获得积分10
11秒前
SMU小刘~发布了新的文献求助10
11秒前
酷酷觅夏发布了新的文献求助10
12秒前
12秒前
12秒前
oyfff完成签到 ,获得积分10
12秒前
now发布了新的文献求助10
14秒前
14秒前
苜久久发布了新的文献求助10
15秒前
Jokerhubo完成签到,获得积分10
17秒前
董睿陶发布了新的文献求助30
17秒前
18秒前
19秒前
20秒前
zwh完成签到,获得积分10
21秒前
宝玉发布了新的文献求助10
22秒前
可爱的函函应助SMU小刘~采纳,获得10
24秒前
所所应助满意紫丝采纳,获得10
24秒前
25秒前
高分求助中
(应助此贴封号)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
F-35B V2.0 How to build Kitty Hawk's F-35B Version 2.0 Model 2500
줄기세포 생물학 1000
The Netter Collection of Medical Illustrations: Digestive System, Volume 9, Part III - Liver, Biliary Tract, and Pancreas (3rd Edition) 600
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
2025-2031全球及中国蛋黄lgY抗体行业研究及十五五规划分析报告(2025-2031 Global and China Chicken lgY Antibody Industry Research and 15th Five Year Plan Analysis Report) 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4483062
求助须知:如何正确求助?哪些是违规求助? 3939098
关于积分的说明 12218897
捐赠科研通 3594317
什么是DOI,文献DOI怎么找? 1976701
邀请新用户注册赠送积分活动 1013825
科研通“疑难数据库(出版商)”最低求助积分说明 906901