Unveiling spatiotemporal tree cover patterns in China: The first 30 m annual tree cover mapping from 1985 to 2023

封面(代数) 树(集合论) 地理 中国 自然地理学 林业 环境科学 地图学 考古 数学 工程类 机械工程 数学分析
作者
Yaotong Cai,Xiaocong Xu,Peng Zhu,Sheng Nie,Cheng Wang,Yujiu Xiong,Xiaoping Liu
出处
期刊:Isprs Journal of Photogrammetry and Remote Sensing 卷期号:216: 240-258 被引量:7
标识
DOI:10.1016/j.isprsjprs.2024.08.001
摘要

China leads in the greening of the world, with a nearly doubled increase in its forest area since the 1980 s revealed by the National Forest Inventory (NFI). However, a significant challenge persists in the absence of consistent and reliable remote sensing data that align with the NFI, hindering a comprehensive understanding of the spatiotemporal patterns of terrestrial ecosystem changes driven by afforestation and reforestation efforts over recent decades in China. Moreover, conventional binary thematic maps and land use and land cover (LULC) maps encounter difficulties in providing a thorough assessment of canopy cover at the subpixel level and trees extending beyond officially designated forest boundaries. This limitation creates substantial gaps in our comprehension of their invaluable contributions to ecosystem services. To confront these challenges, this study presents a systematic framework integrating time-series Landsat satellite imagery and random forest-based ensemble learning techniques. This framework aims to generate China's inaugural annual tree cover dataset (CATCD) spanning from 1985 to 2023 at a 30 m spatial resolution. Evaluation against multisource reference data shown high correlations ranging from 0.70 to 0.96 and reasonable RMSE values ranging from 5.6 % to 25.2 %, highlighting the reliability and precision of our approach across different years and data collection methodologies. Our analysis reveals that China's forested area has doubled, expanding from 1.04 million km2 in 1985 to 2.10 million km2 in 2023. Notably, 33 % of this growth can be attributed to a shift from non-forest to forest land categories, primarily observed in the three-north and southwest regions. However, the majority, contributing 67 %, results primarily from crown closure in central and southern China. This realization underscores the limitations of conventional binary thematic maps and LULC maps in accurately quantifying forest gain in China. Furthermore, China's tree population structure has undergone a transformative shift from 83 % forest trees and 17 % non-forest trees in 1985 to 92 % forest trees and 8 % non-forest trees in 2023, signifying a transition from afforestation to established forests. Our study not only enhances the understanding of tree cover variations in China but also provides valuable data for ecological investigations, land management strategies, and assessments related to climate change.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
翼_完成签到,获得积分20
1秒前
討厭喝水完成签到,获得积分10
1秒前
TJJ发布了新的文献求助10
2秒前
何相逢应助Bai采纳,获得10
2秒前
灵泉完成签到,获得积分10
2秒前
hh发布了新的文献求助10
6秒前
mooncakeshi完成签到,获得积分10
6秒前
的如发布了新的文献求助10
6秒前
9秒前
不吃香菜完成签到,获得积分10
10秒前
hyju完成签到,获得积分10
10秒前
tony发布了新的文献求助10
11秒前
12秒前
楼山柳发布了新的文献求助10
13秒前
why完成签到,获得积分10
13秒前
潇洒的保温杯完成签到,获得积分10
13秒前
Yanis发布了新的文献求助110
14秒前
阿呸完成签到,获得积分10
14秒前
14秒前
要减肥岩完成签到,获得积分10
14秒前
15秒前
郝天鑫完成签到,获得积分10
15秒前
15秒前
风清扬发布了新的文献求助10
16秒前
16秒前
科研通AI2S应助罗晓倩采纳,获得10
17秒前
Li发布了新的文献求助10
17秒前
hui关注了科研通微信公众号
18秒前
19秒前
19秒前
芹菜煎蛋发布了新的文献求助10
19秒前
19秒前
20秒前
Lucas应助过时的觅翠采纳,获得30
21秒前
虚拟的钻石完成签到,获得积分10
21秒前
tony完成签到,获得积分10
22秒前
顺利的若灵完成签到,获得积分10
22秒前
俊逸沛菡发布了新的文献求助10
23秒前
李大白完成签到 ,获得积分10
23秒前
Akim应助梅仑西西采纳,获得10
23秒前
高分求助中
【请各位用户详细阅读此贴后再求助】科研通的精品贴汇总(请勿应助) 10000
International Code of Nomenclature for algae, fungi, and plants (Madrid Code) (Regnum Vegetabile) 1000
Robot-supported joining of reinforcement textiles with one-sided sewing heads 530
求 5G-Advanced NTN空天地一体化技术 pdf版 500
Maritime Applications of Prolonged Casualty Care: Drowning and Hypothermia on an Amphibious Warship 500
Tasteful Old Age:The Identity of the Aged Middle-Class, Nursing Home Tours, and Marketized Eldercare in China 350
Semantics for Latin: An Introduction 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4070153
求助须知:如何正确求助?哪些是违规求助? 3609020
关于积分的说明 11458702
捐赠科研通 3329379
什么是DOI,文献DOI怎么找? 1830242
邀请新用户注册赠送积分活动 900169
科研通“疑难数据库(出版商)”最低求助积分说明 819904