A Vine Copula-Based Hierarchical Framework for Multiscale Uncertainty Analysis

藤蔓copula 连接词(语言学) 数学 计算机科学 不确定性传播 联合概率分布 尾部依赖 不确定度量化 转化(遗传学) 应用数学 多项式混沌 数学优化 算法 蒙特卡罗方法 统计 计量经济学 多元统计 化学 基因 生物化学
作者
Can Xu,Zhao Liu,Wei Tao,Ping Zhu
出处
期刊:Journal of Mechanical Design [American Society of Mechanical Engineers]
卷期号:142 (3) 被引量:16
标识
DOI:10.1115/1.4045177
摘要

Abstract Uncertainty analysis is an effective methodology to acquire the variability of composite material properties. However, it is hard to apply hierarchical multiscale uncertainty analysis to the complex composite materials due to both quantification and propagation difficulties. In this paper, a novel hierarchical framework combined R-vine copula with sparse polynomial chaos expansions is proposed to handle multiscale uncertainty analysis problems. According to the strength of correlations, two different strategies are proposed to complete the uncertainty quantification and propagation. If the variables are weakly correlated or mutually independent, Rosenblatt transformation is used directly to transform non-normal distributions into the standard normal distributions. If the variables are strongly correlated, the multidimensional joint distribution is obtained by constructing R-vine copula, and Rosenblatt transformation is adopted to generalize independent standard variables. Then, the sparse polynomial chaos expansion is used to acquire the uncertainties of outputs with relatively few samples. The statistical moments of those variables that act as the inputs of next upscaling model can be gained analytically and easily by the polynomials. The analysis process of the proposed hierarchical framework is verified by the application of a 3D woven composite material system. Results show that the multidimensional correlations are modeled accurately by the R-vine copula functions, and thus uncertainty propagations with the transformed variables can be done to obtain the computational results with consideration of uncertainties accurately and efficiently.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
www发布了新的文献求助10
2秒前
麦乐提完成签到,获得积分10
2秒前
阿文完成签到,获得积分10
2秒前
3秒前
yjy完成签到,获得积分10
3秒前
3秒前
3秒前
谨慎乌完成签到,获得积分10
4秒前
健壮的翎发布了新的文献求助10
4秒前
4秒前
aspiling应助lele采纳,获得10
5秒前
dasfdufos发布了新的文献求助10
6秒前
6秒前
NexusExplorer应助zzzhu采纳,获得10
7秒前
Jacey79发布了新的文献求助10
7秒前
李健的小迷弟应助kkkkkk采纳,获得30
8秒前
8秒前
jungle发布了新的文献求助10
9秒前
念所三旬完成签到,获得积分10
9秒前
他也蓝完成签到,获得积分10
9秒前
赵亿亿发布了新的文献求助10
11秒前
Zn0103完成签到 ,获得积分10
12秒前
www完成签到,获得积分20
13秒前
健壮的翎完成签到,获得积分10
14秒前
欧梨欧梨完成签到,获得积分10
14秒前
15秒前
15秒前
酷波er应助大气谷雪采纳,获得10
15秒前
田様应助典雅的不悔采纳,获得10
16秒前
20秒前
JWKim完成签到,获得积分10
20秒前
谦让的秀发布了新的文献求助10
21秒前
糊涂的语兰完成签到,获得积分10
21秒前
乐乐应助酷酷朋友采纳,获得10
23秒前
ding应助周小鱼采纳,获得10
24秒前
kkkkkk完成签到,获得积分20
25秒前
曲奇不甜发布了新的文献求助10
26秒前
liangyueru完成签到,获得积分10
26秒前
26秒前
高分求助中
Mass producing individuality 600
Разработка метода ускоренного контроля качества электрохромных устройств 500
A Combined Chronic Toxicity and Carcinogenicity Study of ε-Polylysine in the Rat 400
Advances in Underwater Acoustics, Structural Acoustics, and Computational Methodologies 300
Treatise on Process Metallurgy Volume 3: Industrial Processes (2nd edition) 250
Progress in Inorganic Chemistry 200
Between east and west transposition of cultural systems and military technology of fortified landscapes 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3825749
求助须知:如何正确求助?哪些是违规求助? 3367899
关于积分的说明 10448465
捐赠科研通 3087338
什么是DOI,文献DOI怎么找? 1698645
邀请新用户注册赠送积分活动 816871
科研通“疑难数据库(出版商)”最低求助积分说明 769973