Research on defect detection method of bearing dust cover based on machine vision and multi-feature fusion algorithm

计算机科学 尺度不变特征变换 人工智能 方位(导航) 模式识别(心理学) 机器视觉 特征(语言学) 计算机视觉 特征提取 算法 哲学 语言学
作者
Yong Hao,Chengxiang Zhang,Xiyan Li
出处
期刊:Measurement Science and Technology [IOP Publishing]
卷期号:34 (10): 105016-105016
标识
DOI:10.1088/1361-6501/ace5c7
摘要

Abstract During the assembly process of deep groove ball bearings, due to defective parts and unqualified assembly process, various indentations and scratches on the dust cover will often result in reducing the service life and reliability of the bearing. Therefore, the online monitoring of the assembly quality of the dust cover ensures the necessary detection process of the bearing surface quality. This paper proposed a bearing dust cover defect detection method based on machine vision and multi-feature fusion algorithm, which can effectively detect bearings with dust cover defects. The algorithm first performs Laplace transform and Sobel operator image enhancement on the collected bearing images. Extract and fuse multi-source fault feature with the scale-invariant feature transform (SIFT), bag-of-visual-words (BoVW) and GLCM-Hu methods. Machine learning and deep learning models were constructed, and the performance of each model was compared through feature visualization and misclassified analysis. The results show that the extracted multi-source features are more representative and robust. The SIFT-BoVW-GS-SVM model achieved the best detection results in detecting bearing dust cover defects with an accuracy of 91.11%. The processing and program detection time for each bearing image is about 0.019 s. The accuracy and speed of detection and judgment meet the needs of online defect detection of bearing dust cover.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI5应助qiulong采纳,获得10
1秒前
1秒前
格格发布了新的文献求助10
2秒前
fl发布了新的文献求助10
2秒前
3秒前
奋斗的大象完成签到 ,获得积分10
5秒前
stitch发布了新的文献求助20
5秒前
水穷云起完成签到,获得积分10
6秒前
ll完成签到 ,获得积分10
7秒前
8秒前
作文27分完成签到,获得积分10
10秒前
S飞完成签到 ,获得积分10
11秒前
核桃酥完成签到,获得积分10
11秒前
ycccccc完成签到 ,获得积分10
13秒前
深情安青应助mariawang采纳,获得200
14秒前
刘刘完成签到,获得积分10
14秒前
xuanxuan完成签到 ,获得积分10
16秒前
科研通AI5应助stitch采纳,获得10
16秒前
铃儿响叮当完成签到,获得积分20
17秒前
英俊的铭应助科研通管家采纳,获得10
17秒前
科研通AI2S应助科研通管家采纳,获得10
17秒前
大个应助科研通管家采纳,获得10
17秒前
雨夜星空应助科研通管家采纳,获得10
17秒前
打打应助科研通管家采纳,获得10
17秒前
情怀应助科研通管家采纳,获得10
17秒前
上官若男应助科研通管家采纳,获得10
17秒前
平淡井应助科研通管家采纳,获得20
18秒前
慕青应助科研通管家采纳,获得10
18秒前
Hello应助科研通管家采纳,获得10
18秒前
冰魂应助科研通管家采纳,获得20
18秒前
英俊的铭应助科研通管家采纳,获得10
18秒前
Ava应助科研通管家采纳,获得10
18秒前
iNk应助科研通管家采纳,获得20
18秒前
hywel应助科研通管家采纳,获得30
18秒前
ThreeAct6完成签到,获得积分10
19秒前
哭泣灯泡完成签到,获得积分10
20秒前
21秒前
CC完成签到,获得积分10
23秒前
23秒前
852应助AA采纳,获得10
24秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
ISCN 2024 – An International System for Human Cytogenomic Nomenclature (2024) 3000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Mindfulness and Character Strengths: A Practitioner's Guide to MBSP 380
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3776552
求助须知:如何正确求助?哪些是违规求助? 3322124
关于积分的说明 10208682
捐赠科研通 3037339
什么是DOI,文献DOI怎么找? 1666647
邀请新用户注册赠送积分活动 797603
科研通“疑难数据库(出版商)”最低求助积分说明 757893