A multimodal fusion network based on variational autoencoder for distinguishing SCLC brain metastases from NSCLC brain metastases

计算机科学 模态(人机交互) 自编码 人工智能 模式识别(心理学) 流体衰减反转恢复 肺癌 编码器 特征(语言学) 模式 医学 磁共振成像 放射科 人工神经网络 病理 社会学 语言学 哲学 操作系统 社会科学
作者
Linyan Xue,Jie Cao,Zhou Kexuan,Chen Houquan,Qi Chaoyi,Yin Xiaosong,Jianing Wang,Kun Yang
出处
期刊:Medical Physics [Wiley]
卷期号:52 (7)
标识
DOI:10.1002/mp.17816
摘要

Abstract Background Distinguishing small cell lung cancer brain metastases from non‐small cell lung cancer brain metastases in MRI sequence images is crucial for the accurate diagnosis and treatment of lung cancer brain metastases. Multi‐MRI modalities provide complementary and comprehensive information, but efficiently merging these sequences to achieve modality complementarity is challenging due to redundant information within radiomic features and heterogeneity across different modalities. Purpose To address these challenges, we propose a novel multimodal fusion network, termed MFN‐VAE, which utilizes a variational auto‐encoder (VAE) to compress and aggregate radiomic features derived from MRI images. Methods Initially, we extract radiomic features from areas of interest in MRI images across T1WI, FLAIR, and DWI modalities. A VAE encoder is then constructed to project these multimodal features into a latent space, where they are decoded into reconstruction features using a decoder. The encoder‐decoder network is trained to extract the underlying feature representation of each modality, capturing both the consistency and specificity of each domain. Results Experimental results on our collected dataset of lung cancer brain metastases demonstrate the encouraging performance of our proposed MFN‐VAE. The method achieved a 0.888 accuracy and a 0.920 AUC (area under the curve), outperforming state‐of‐the‐art methods across different modal combinations. Conclusions In this study, we introduce the MFN‐VAE, a new multimodal fusion network for differentiating small cell from non‐small cell lung cancer brain metastases. Tested on a private dataset, MFN‐VAE demonstrated high accuracy (ACC: 0.888; AUC: 0.920), effectively distinguishing between small cell lung cancer brain metastases (SCLC) and non‐small cell lung cancer (NSCLC). The SHapley Additive explanation (SHAP) method was used to enhance model interpretability, providing clinicians with a reliable diagnostic tool. Overall, MFN‐VAE shows great potential in improving the diagnosis and treatment of lung cancer brain metastases.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
zhaohu47完成签到,获得积分10
1秒前
青山完成签到,获得积分10
7秒前
哲轩发布了新的文献求助10
8秒前
我爱看文献给我爱看文献的求助进行了留言
14秒前
16秒前
科研通AI5应助jjf采纳,获得10
18秒前
科研通AI6应助chengmin采纳,获得10
18秒前
聪慧的从雪完成签到 ,获得积分10
19秒前
一袁发布了新的文献求助20
20秒前
jinlong完成签到,获得积分10
20秒前
21秒前
董子昊发布了新的文献求助10
23秒前
23秒前
周某人发布了新的文献求助10
25秒前
26秒前
怡然的姒完成签到,获得积分10
34秒前
科研通AI5应助悲凉的艳采纳,获得10
38秒前
yzy完成签到,获得积分10
42秒前
温如军完成签到,获得积分10
49秒前
51秒前
follow完成签到,获得积分10
51秒前
zzk完成签到,获得积分10
53秒前
QTe发布了新的文献求助10
53秒前
Jieh完成签到 ,获得积分10
54秒前
沉静的时光完成签到 ,获得积分10
55秒前
56秒前
高挑的雅山完成签到,获得积分10
57秒前
阳光刺眼发布了新的文献求助10
1分钟前
jiangxxxx1完成签到,获得积分20
1分钟前
JIA完成签到,获得积分10
1分钟前
zry完成签到,获得积分20
1分钟前
Azyyyy完成签到,获得积分10
1分钟前
好大一个赣宝完成签到,获得积分10
1分钟前
汉堡包应助mimimi采纳,获得10
1分钟前
通科研完成签到 ,获得积分10
1分钟前
沦落而发布了新的文献求助10
1分钟前
苗玉完成签到,获得积分10
1分钟前
1分钟前
diZ关注了科研通微信公众号
1分钟前
情怀应助一只鲨呱采纳,获得10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Irregular Migration in Southeast Asia: Contemporary Barriers to Regularization and Healthcare 2000
Acute Mountain Sickness 2000
Cowries - A Guide to the Gastropod Family Cypraeidae 1200
Handbook of Milkfat Fractionation Technology and Application, by Kerry E. Kaylegian and Robert C. Lindsay, AOCS Press, 1995 1000
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5051860
求助须知:如何正确求助?哪些是违规求助? 4279026
关于积分的说明 13338170
捐赠科研通 4094340
什么是DOI,文献DOI怎么找? 2240941
邀请新用户注册赠送积分活动 1247362
关于科研通互助平台的介绍 1176557