Deep learning in statistical downscaling for deriving high spatial resolution gridded meteorological data: A systematic review

缩小尺度 计算机科学 比例(比率) 卷积神经网络 深度学习 人工神经网络 人工智能 机器学习 数据挖掘 遥感 气象学 地理 地图学 降水
作者
Yongjian Sun,Kefeng Deng,Kaijun Ren,Jia Liu,Chongjiu Deng,Yongjun Jin
出处
期刊:Isprs Journal of Photogrammetry and Remote Sensing 卷期号:208: 14-38 被引量:28
标识
DOI:10.1016/j.isprsjprs.2023.12.011
摘要

Nowadays, meteorological data plays a crucial role in various fields such as remote sensing, weather forecasting, climate change, and agriculture. The regional and local studies call for high spatial resolution gridded meteorological data to identify refined details, which however is generally limited due to the models, platforms, sensors, etc. Downscaling has been a significant and practical way to improve spatial resolution. In recent years, with superior feature extraction and expression abilities, deep learning (DL) has outperformed traditional methods in various areas, and exhibits huge potential to establish a complicated mapping between large-scale and local-scale meteorological data. Therefore, this paper provides a systematic review of DL in statistical downscaling for deriving high spatial resolution gridded meteorological data. This review first presents the background, including a taxonomy of downscaling methods, the role of DL in statistical downscaling, and the analogy between downscaling and image super-resolution. It shows evidence of how downscaling can benefit from DL, particularly super-resolution networks. Subsequently, this review focuses on the recent development of the DL-based statistical downscaling of gridded meteorological data, especially the deep architectures, including convolutional neural networks to capture the spatial dependencies of meteorological variables, recurrent neural networks to reveal the temporal states from time series, and generative adversarial networks to facilitate the reconstruction of high-frequency details, as well as the major structure residual learning and attention mechanism. In addition, this review demonstrates the specific issues towards downscaling, including scaling factors, spatial–temporal and variable correlations, and paired datasets construction, and then gives a comprehensive summary of the status of datasets, toolsets and metrics. The future challenges from the perspective of unsupervised models, transformer architecture, data fusion, physical-informed learning, generalization capacity, and uncertainty quantification for downscaling are finally discussed.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
上官若男应助jixuzhuixun采纳,获得10
刚刚
慕青应助jixuzhuixun采纳,获得10
刚刚
传奇3应助jixuzhuixun采纳,获得10
1秒前
小背包完成签到 ,获得积分10
1秒前
小y完成签到,获得积分10
1秒前
One完成签到 ,获得积分10
2秒前
笨笨的乐驹完成签到,获得积分20
2秒前
x跳完成签到,获得积分10
3秒前
晨晨发布了新的文献求助10
3秒前
朴素绿真完成签到,获得积分10
3秒前
3秒前
情怀应助wlx采纳,获得30
3秒前
白潇潇发布了新的文献求助50
3秒前
liz发布了新的文献求助10
4秒前
4秒前
5秒前
科研通AI2S应助一一采纳,获得10
5秒前
我爱吃糯米团子完成签到,获得积分10
5秒前
cc发布了新的文献求助10
7秒前
陶ni吉吉完成签到,获得积分10
9秒前
ding应助善良的沛山采纳,获得10
9秒前
yousa发布了新的文献求助10
9秒前
田様应助二指弹采纳,获得10
9秒前
leoric完成签到,获得积分10
9秒前
俏皮的采蓝完成签到 ,获得积分10
9秒前
都是完成签到,获得积分20
10秒前
星辰大海应助知性小蝴蝶采纳,获得10
10秒前
11秒前
kyt完成签到,获得积分10
11秒前
猪猪hero发布了新的文献求助10
11秒前
张嘉慧完成签到,获得积分10
12秒前
大林发布了新的文献求助10
12秒前
灵巧代柔完成签到,获得积分10
13秒前
cc完成签到,获得积分10
13秒前
13秒前
苗条一兰完成签到,获得积分10
13秒前
ws556发布了新的文献求助10
14秒前
易止完成签到 ,获得积分10
14秒前
14秒前
等待冬亦应助咖可乐采纳,获得10
14秒前
高分求助中
Thinking Small and Large 500
Algorithmic Mathematics in Machine Learning 500
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
New Syntheses with Carbon Monoxide 200
Quanterion Automated Databook NPRD-2023 200
Interpretability and Explainability in AI Using Python 200
SPECIAL FEATURES OF THE EXCHANGE INTERACTIONS IN ORTHOFERRITE-ORTHOCHROMITES 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3834697
求助须知:如何正确求助?哪些是违规求助? 3377202
关于积分的说明 10497023
捐赠科研通 3096605
什么是DOI,文献DOI怎么找? 1705084
邀请新用户注册赠送积分活动 820451
科研通“疑难数据库(出版商)”最低求助积分说明 772054