Deep learning in statistical downscaling for deriving high spatial resolution gridded meteorological data: A systematic review

缩小尺度 计算机科学 比例(比率) 卷积神经网络 深度学习 人工神经网络 人工智能 机器学习 数据挖掘 遥感 气象学 地理 地图学 降水
作者
Yongjian Sun,Kefeng Deng,Kaijun Ren,Jia Liu,Chongjiu Deng,Yongjun Jin
出处
期刊:Isprs Journal of Photogrammetry and Remote Sensing 卷期号:208: 14-38 被引量:36
标识
DOI:10.1016/j.isprsjprs.2023.12.011
摘要

Nowadays, meteorological data plays a crucial role in various fields such as remote sensing, weather forecasting, climate change, and agriculture. The regional and local studies call for high spatial resolution gridded meteorological data to identify refined details, which however is generally limited due to the models, platforms, sensors, etc. Downscaling has been a significant and practical way to improve spatial resolution. In recent years, with superior feature extraction and expression abilities, deep learning (DL) has outperformed traditional methods in various areas, and exhibits huge potential to establish a complicated mapping between large-scale and local-scale meteorological data. Therefore, this paper provides a systematic review of DL in statistical downscaling for deriving high spatial resolution gridded meteorological data. This review first presents the background, including a taxonomy of downscaling methods, the role of DL in statistical downscaling, and the analogy between downscaling and image super-resolution. It shows evidence of how downscaling can benefit from DL, particularly super-resolution networks. Subsequently, this review focuses on the recent development of the DL-based statistical downscaling of gridded meteorological data, especially the deep architectures, including convolutional neural networks to capture the spatial dependencies of meteorological variables, recurrent neural networks to reveal the temporal states from time series, and generative adversarial networks to facilitate the reconstruction of high-frequency details, as well as the major structure residual learning and attention mechanism. In addition, this review demonstrates the specific issues towards downscaling, including scaling factors, spatial–temporal and variable correlations, and paired datasets construction, and then gives a comprehensive summary of the status of datasets, toolsets and metrics. The future challenges from the perspective of unsupervised models, transformer architecture, data fusion, physical-informed learning, generalization capacity, and uncertainty quantification for downscaling are finally discussed.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
jiying131完成签到,获得积分10
1秒前
热情的巧曼完成签到,获得积分10
1秒前
领导范儿应助轻松的悟空采纳,获得10
1秒前
Yang应助lyl1995采纳,获得10
3秒前
FashionBoy应助张桂钊采纳,获得10
3秒前
莫飞完成签到,获得积分10
3秒前
Freedom发布了新的文献求助10
4秒前
情怀应助双生客采纳,获得10
4秒前
科研通AI2S应助xxxxx采纳,获得10
4秒前
guan发布了新的文献求助10
5秒前
wjw发布了新的文献求助30
5秒前
可爱的函函应助毛毛哦啊采纳,获得10
5秒前
blush发布了新的文献求助20
5秒前
5秒前
kk发布了新的文献求助10
6秒前
6666完成签到,获得积分20
6秒前
科研CY发布了新的文献求助10
7秒前
充电宝应助Albee采纳,获得10
7秒前
百里健柏完成签到,获得积分10
8秒前
隐形曼青应助贪玩岱周采纳,获得10
9秒前
9秒前
李山鬼发布了新的文献求助10
9秒前
10秒前
10秒前
科研通AI5应助笑点低的紫采纳,获得10
10秒前
11秒前
无欲无求的打工仔完成签到,获得积分10
11秒前
追逐123完成签到 ,获得积分10
12秒前
abner应助多情口红采纳,获得10
12秒前
12秒前
浮游应助青梧采纳,获得10
12秒前
任婷发布了新的文献求助10
13秒前
121314wld发布了新的文献求助10
13秒前
阳光向秋发布了新的文献求助10
13秒前
13秒前
浮游应助呵呵禾采纳,获得10
13秒前
Akim应助啦啦啦采纳,获得10
14秒前
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
《微型计算机》杂志2006年增刊 1600
Einführung in die Rechtsphilosophie und Rechtstheorie der Gegenwart 1500
Binary Alloy Phase Diagrams, 2nd Edition 1000
Air Transportation A Global Management Perspective 9th Edition 700
DESIGN GUIDE FOR SHIPBOARD AIRBORNE NOISE CONTROL 600
NMR in Plants and Soils: New Developments in Time-domain NMR and Imaging 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4960767
求助须知:如何正确求助?哪些是违规求助? 4221237
关于积分的说明 13146027
捐赠科研通 4004962
什么是DOI,文献DOI怎么找? 2191794
邀请新用户注册赠送积分活动 1205889
关于科研通互助平台的介绍 1116970