Explainable AI for CHO cell culture media optimization and prediction of critical quality attribute

特征选择 计算机科学 关键质量属性 特征(语言学) 排名(信息检索) 质量(理念) 生化工程 数据挖掘 人工智能 机器学习 化学 工程类 哲学 物理化学 认识论 粒径 语言学
作者
Neelesh Gangwar,Keerthiveena Balraj,Anurag S. Rathore
出处
期刊:Applied Microbiology and Biotechnology [Springer Science+Business Media]
卷期号:108 (1) 被引量:2
标识
DOI:10.1007/s00253-024-13147-w
摘要

Abstract Cell culture media play a critical role in cell growth and propagation by providing a substrate; media components can also modulate the critical quality attributes (CQAs). However, the inherent complexity of the cell culture media makes unraveling the impact of the various media components on cell growth and CQAs non-trivial. In this study, we demonstrate an end-to-end machine learning framework for media component selection and prediction of CQAs. The preliminary dataset for feature selection was generated by performing CHO-GS (-/-) cell culture in media formulations with varying metal ion concentrations. Acidic and basic charge variant composition of the innovator product (24.97 ± 0.54% acidic and 11.41 ± 1.44% basic) was chosen as the target variable to evaluate the media formulations. Pearson’s correlation coefficient and random forest-based techniques were used for feature ranking and feature selection for the prediction of acidic and basic charge variants. Furthermore, a global interpretation analysis using SHapley Additive exPlanations was utilized to select optimal features by evaluating the contributions of each feature in the extracted vectors. Finally, the medium combinations were predicted by employing fifteen different regression models and utilizing a grid search and random search cross-validation for hyperparameter optimization. Experimental results demonstrate that Fe and Zn significantly impact the charge variant profile. This study aims to offer insights that are pertinent to both innovators seeking to establish a complete pipeline for media development and optimization and biosimilar-based manufacturers who strive to demonstrate the analytical and functional biosimilarity of their products to the innovator. Key points • Developed a framework for optimizing media components and prediction of CQA. • SHAP enhances global interpretability, aiding informed decision-making. • Fifteen regression models were employed to predict medium combinations.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
852应助郑旭辉采纳,获得10
1秒前
1秒前
2秒前
哈哈哈哈发布了新的文献求助10
2秒前
完美世界应助DELI采纳,获得10
2秒前
研友_VZG7GZ应助GS_lly采纳,获得10
2秒前
2秒前
3秒前
3秒前
3秒前
小橙子发布了新的文献求助10
3秒前
4秒前
11完成签到,获得积分10
4秒前
暴发户完成签到,获得积分10
4秒前
小雨完成签到,获得积分10
4秒前
5秒前
所所应助爱撒娇的紫菜采纳,获得10
5秒前
5秒前
ZL张莉发布了新的文献求助10
5秒前
6秒前
邢女士发布了新的文献求助10
6秒前
无私乐驹发布了新的文献求助30
6秒前
郑旭辉完成签到,获得积分10
6秒前
赵赵赵发布了新的文献求助10
6秒前
carols完成签到,获得积分20
7秒前
打打应助落寞冬云采纳,获得10
8秒前
时尚以亦发布了新的文献求助10
8秒前
手拿把掐吴完成签到,获得积分10
9秒前
JamesPei应助白莎采纳,获得10
9秒前
所所应助狗大王采纳,获得10
10秒前
坚强打工人完成签到,获得积分10
11秒前
顾安安完成签到,获得积分10
12秒前
简默发布了新的文献求助10
12秒前
13秒前
Justin完成签到,获得积分10
13秒前
13秒前
14秒前
14秒前
HY完成签到,获得积分10
15秒前
丁闯发布了新的文献求助10
15秒前
高分求助中
【提示信息,请勿应助】请使用合适的网盘上传文件 10000
Continuum Thermodynamics and Material Modelling 2000
Electron microscopy study of magnesium hydride (MgH2) for Hydrogen Storage 800
Green Star Japan: Esperanto and the International Language Question, 1880–1945 800
Sentimental Republic: Chinese Intellectuals and the Maoist Past 800
可瓷化聚合物复合材料的制备及成瓷性能、机理研究 500
Building Quantum Computers 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3869941
求助须知:如何正确求助?哪些是违规求助? 3412219
关于积分的说明 10678160
捐赠科研通 3136600
什么是DOI,文献DOI怎么找? 1730293
邀请新用户注册赠送积分活动 833899
科研通“疑难数据库(出版商)”最低求助积分说明 780994