Stress hyperglycemia ratio and machine learning model for prediction of all-cause mortality in patients undergoing cardiac surgery

医学 血管病学 心脏外科 糖尿病 内科学 心脏病学 重症监护医学 外科 内分泌学
作者
Yingjian Pei,Yajun Ma,Ying Xiang,Guitao Zhang,Feng Yao,Wenbo Li,Yinghua Zhou,Shujuan Li
出处
期刊:Cardiovascular Diabetology [BioMed Central]
卷期号:24 (1)
标识
DOI:10.1186/s12933-025-02644-5
摘要

The stress hyperglycemia ratio (SHR) was developed to reduce the effects of long-term chronic glycemic factors on stress hyperglycemia levels, which was associated with adverse clinical outcomes. This study aims to evaluate the relationship between the postoperative SHR index and all-cause mortality in patients undergoing cardiac surgery. Data for this study were extracted from the Medical Information Mart for Intensive Care IV (MIMIC-IV) database. Patients were categorized into four groups based on postoperative SHR index quartiles. The primary outcome was 30-day all-cause mortality, while the secondary outcomes included in-hospital, 90-day and 360-day all-cause mortality. The SHR index was analyzed using quartiles, and Kaplan-Meier curves were generated to compare outcomes across groups. Cox proportional hazards regression and restricted cubic splines (RCS) were employed to assess the relationship between the SHR index and the outcomes. LASSO regression was used for feature selection. Six machine learning algorithms were used to predict in-hospital all-cause mortality and were further extended to predict 360-day all-cause mortality. The SHapley Additive exPlanations method was used for visualizing model characteristics and individual case predictions. A total of 3,848 participants were included in the study, with a mean age of 68 ± 12 years and female participants comprised 30.6% (1,179). Higher postoperative SHR index levels were associated with an increased risk of in-hospital, 90-day and 360-day all-cause mortality as shown by Kaplan-Meier curves (log-rank P < 0.05). Cox regression analysis revealed that the highest postoperative SHR quartile was associated with a significantly higher risk of mortality at these time points (P < 0.05). RCS analysis demonstrated nonlinear relationships between the postoperative SHR index and all-cause mortality (P for nonlinear < 0.05). The Naive Bayes model achieves the highest area under the curve (AUC) for predicting both in-hospital mortality (0.7936) and 360-day all-cause mortality (0.7410). In patients undergoing cardiac surgery, higher postoperative SHR index levels were significantly associated with increased risk of in-hospital, 90-day and 360-day all-cause mortality. The SHR index may serve as a valid tool for assessing the severity after cardiac surgery and guiding treatment decisions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
不卷心菜发布了新的文献求助10
1秒前
零度酷冷发布了新的文献求助10
2秒前
Xi发布了新的文献求助10
3秒前
YXY完成签到,获得积分10
3秒前
科研一霸完成签到,获得积分10
3秒前
123发布了新的文献求助10
4秒前
烟花应助诚c采纳,获得10
4秒前
奔流的河发布了新的文献求助10
4秒前
iiiau完成签到,获得积分10
5秒前
怕黑念薇发布了新的文献求助10
5秒前
Jenny发布了新的文献求助10
5秒前
科研一霸发布了新的文献求助10
6秒前
善学以致用应助款款采纳,获得10
6秒前
但大图完成签到 ,获得积分10
7秒前
不想做实验完成签到 ,获得积分10
7秒前
不卷心菜完成签到,获得积分20
8秒前
甘乐发布了新的文献求助10
8秒前
骆十八完成签到,获得积分10
9秒前
王水水发布了新的文献求助10
9秒前
菲菲发布了新的文献求助10
10秒前
核桃应助jinjun采纳,获得10
11秒前
Xi完成签到,获得积分10
11秒前
12秒前
活泼的机器猫完成签到,获得积分10
12秒前
小熊可可茶关注了科研通微信公众号
12秒前
13秒前
华仔应助科研一霸采纳,获得10
13秒前
16秒前
16秒前
obcx完成签到,获得积分10
17秒前
张腾昊发布了新的文献求助10
18秒前
18秒前
18秒前
自信机器猫完成签到 ,获得积分20
18秒前
顺利八宝粥完成签到,获得积分10
19秒前
英勇的雪碧完成签到 ,获得积分10
19秒前
zsda发布了新的文献求助10
20秒前
不想做实验关注了科研通微信公众号
20秒前
21秒前
22秒前
高分求助中
Разработка метода ускоренного контроля качества электрохромных устройств 500
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
Epigenetic Drug Discovery 500
Politiek-Politioneele Overzichten van Nederlandsch-Indië. Bronnenpublicatie, Deel II 1929-1930 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3819299
求助须知:如何正确求助?哪些是违规求助? 3362381
关于积分的说明 10416801
捐赠科研通 3080563
什么是DOI,文献DOI怎么找? 1694605
邀请新用户注册赠送积分活动 814719
科研通“疑难数据库(出版商)”最低求助积分说明 768403