Quasi-Newton optimised Kolmogorov-Arnold Networks for wind farm power prediction

风力发电 功率(物理) 数学 应用数学 工程类 气象学 物理 电气工程 热力学
作者
Auwalu Saleh Mubarak,Zubaida Said Ameen,Sagiru Mati,Ayodele Lasisi,Quadri Noorulhasan Naveed,Rabiu Aliyu Abdulkadir
出处
期刊:Heliyon [Elsevier BV]
卷期号:10 (23): e40799-e40799 被引量:12
标识
DOI:10.1016/j.heliyon.2024.e40799
摘要

Having accurate and effective wind energy forecasting that can be easily incorporated into smart networks is important. Appropriate planning and energy generation predictions are necessary for these infrastructures. The production of wind energy is linked to instability and unpredictability. Wind energy forecasting has traditionally been performed using statistical models, but with the advent of artificial intelligence (AI), research indicates that AI is more accurate than the statical technique. In this study, the nominal power of six wind farms in China was predicted using Kolmogorov-Arnold Networks (KAN) and Multilayer Perceptron (MLP) models. KAN as an alternative to the conventional MLP, has the ability to handle problems with scalability, vanishing gradients, and interpretability associated with MLP. The KAN uses learnable B-Spline as activation functions prompting it to address the issues of the MLP. We employed the Radial Basis Function (RBF) with Gaussian kernels to approximate the 3-order B-spline basis. In most deep learning models stochastic gradient-based optimization algorithms such as Adaptive Moment Estimation (ADAM) and Stochastic Gradient Descent (SGD) optimizer are mostly employed, a quasi-Newton optimization technique Limited-memory Broyden-Fletcher-Goldfarb-Shanno algorithm LBFGS was employed in this work to approximate the Hessian matrix and estimate the parameter space's curvature. Also, in the preprocessing of the data, the Interquartile Range (IQR) technique is used to handle outliers and a clustering-based K-Nearest Neighbor (KNN) imputer to handle missing values. Based on different sites, the KAN-LBFGS shows superior performance based on the performance evaluation metrics with site 5 achieving MSE of 0.0039, RMSE of 0.0622, MAE of 0.0352, and DC of 0.9468. The study highlights the importance of the model's architecture, preprocessing and optimization techniques.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
lalala123完成签到,获得积分10
1秒前
小马同学应助科研痛痛痛采纳,获得10
2秒前
ailemonmint完成签到 ,获得积分10
2秒前
酷波er应助orchid采纳,获得10
2秒前
3秒前
3秒前
跳跃大侠发布了新的文献求助10
3秒前
哈哈哈完成签到 ,获得积分10
3秒前
金城武完成签到,获得积分10
3秒前
3秒前
4秒前
善学以致用应助Yu采纳,获得10
4秒前
阔达的马里奥完成签到 ,获得积分10
4秒前
zzb完成签到,获得积分10
6秒前
英俊的铭应助szp采纳,获得10
6秒前
充电宝应助激动的访文采纳,获得10
6秒前
墨鱼汁拌饭完成签到,获得积分10
6秒前
7秒前
7秒前
8秒前
tingtingting完成签到,获得积分10
8秒前
冷水鱼完成签到,获得积分10
8秒前
xiu完成签到,获得积分10
9秒前
罗罗完成签到 ,获得积分10
9秒前
glycine发布了新的文献求助10
9秒前
cmuzf完成签到,获得积分10
10秒前
成就以丹发布了新的文献求助10
10秒前
飞萧完成签到,获得积分10
11秒前
顾矜应助张mingyu123采纳,获得10
13秒前
义气凝阳发布了新的文献求助20
13秒前
zzb发布了新的文献求助20
13秒前
13秒前
ao完成签到,获得积分10
14秒前
科研通AI6应助可靠的香魔采纳,获得10
15秒前
马思唯完成签到,获得积分10
15秒前
guihai发布了新的文献求助10
15秒前
15秒前
马子婷完成签到,获得积分10
16秒前
16秒前
慕青应助是真的采纳,获得10
17秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
PARLOC2001: The update of loss containment data for offshore pipelines 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
Constitutional and Administrative Law 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5264034
求助须知:如何正确求助?哪些是违规求助? 4424379
关于积分的说明 13772854
捐赠科研通 4299447
什么是DOI,文献DOI怎么找? 2359095
邀请新用户注册赠送积分活动 1355361
关于科研通互助平台的介绍 1316624