A computer vision approach to continuously monitor fatigue during resistance training

计算机科学 自感劳累评分 人工智能 蹲下 过度训练 感知器 人工神经网络 梯度升压 模拟 机器学习 随机森林 运动员 物理医学与康复 物理疗法 心率 血压 医学 放射科
作者
Justin Amadeus Albert,Bert Arnrich
出处
期刊:Biomedical Signal Processing and Control [Elsevier BV]
卷期号:89: 105701-105701 被引量:2
标识
DOI:10.1016/j.bspc.2023.105701
摘要

Monitoring fatigue during resistance training is essential to avoid injuries caused by overtraining. Fatigue can be comprehensively quantified by the external and internal load, where the external load is the work done by the athlete, and the internal load is the psychological and physiological response to the external load. This paper proposes a computer vision method to continuously monitor fatigue during resistance training by predicting external and internal parameters, namely the generated power and the rating of perceived exertion. We utilize the human pose estimation from two Microsoft Azure Kinect cameras to capture the movement of athletes while performing stationary exercises. Our method processes the obtained kinematic data, computes skeleton features to train traditional machine learning algorithms, and constructs feature maps to train convolutional neural network-based models to predict the load parameters. For evaluation, we recorded a dataset of 16 subjects who performed squat exercises on a Flywheel and rated their perceived exertion after each set. A measuring unit integrated into the Flywheel provided power readings for each repetition. The results show that our method achieves good results in predicting both parameters. Gradient Boosting Regression Trees best predicted perceived exertion with a mean absolute percentage error of 8.08% and a Spearman's ρ=0.74. Multi-layer Perceptron performed best in predicting power with a mean absolute error of 23.13 Watts and ρ=0.79. Our findings show that our approach delivers promising external and internal load quantifications for fatigue, with great potential to provide external feedback to coaches or athletes.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
LO7pM2完成签到,获得积分10
2秒前
神秘玩家发布了新的文献求助10
2秒前
2秒前
Zozo完成签到,获得积分10
3秒前
罗静完成签到,获得积分10
5秒前
5秒前
微笑发布了新的文献求助10
6秒前
小小王发布了新的文献求助10
7秒前
Harper完成签到,获得积分10
8秒前
小马甲应助科研通管家采纳,获得10
8秒前
Xiaoxiao应助快乐的幻波采纳,获得20
8秒前
8秒前
搜集达人应助科研通管家采纳,获得10
8秒前
Leif应助科研通管家采纳,获得20
9秒前
科研通AI5应助科研通管家采纳,获得10
9秒前
科研通AI5应助科研通管家采纳,获得10
9秒前
汉堡包应助科研通管家采纳,获得10
9秒前
科目三应助科研通管家采纳,获得10
9秒前
天天快乐应助科研通管家采纳,获得10
9秒前
9秒前
七月流火应助科研通管家采纳,获得10
9秒前
依依应助科研通管家采纳,获得10
9秒前
思源应助科研通管家采纳,获得10
9秒前
9秒前
CWNU_HAN应助科研通管家采纳,获得30
9秒前
CodeCraft应助科研通管家采纳,获得10
9秒前
CWNU_HAN应助科研通管家采纳,获得30
9秒前
天天快乐应助科研通管家采纳,获得10
9秒前
10秒前
蒋海完成签到 ,获得积分10
10秒前
Jasper应助科研通管家采纳,获得10
10秒前
诸葛御风应助科研通管家采纳,获得10
10秒前
隐形曼青应助科研通管家采纳,获得10
10秒前
华仔应助科研通管家采纳,获得10
10秒前
10秒前
脑洞疼应助科研通管家采纳,获得10
10秒前
10秒前
10秒前
科研通AI5应助科研通管家采纳,获得10
10秒前
高分求助中
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
Optical and electric properties of monocrystalline synthetic diamond irradiated by neutrons 320
共融服務學習指南 300
Essentials of Pharmacoeconomics: Health Economics and Outcomes Research 3rd Edition. by Karen Rascati 300
Peking Blues // Liao San 300
E-commerce live streaming impact analysis based on stimulus-organism response theory 260
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3801238
求助须知:如何正确求助?哪些是违规求助? 3346927
关于积分的说明 10331008
捐赠科研通 3063228
什么是DOI,文献DOI怎么找? 1681462
邀请新用户注册赠送积分活动 807600
科研通“疑难数据库(出版商)”最低求助积分说明 763770