亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Predicting Shock Syndrome in Kawasaki Disease: A Machine Learning Model for Enhanced Diagnosis

随机森林 接收机工作特性 逻辑回归 医学 混淆矩阵 前瞻性队列研究 交叉验证 机器学习 曲线下面积 预测建模 人工智能 内科学 计算机科学
作者
Yifeng Xu,Yuting Pan,Yifan Xie,Lingzhi Qiu,Zhidan Fan,Haiguo Yu
出处
期刊:QJM: An International Journal of Medicine [Oxford University Press]
标识
DOI:10.1093/qjmed/hcaf180
摘要

Abstract Background Kawasaki disease shock syndrome (KDSS), a severe and uncommon phenomenon, lacks effective predictive models for early identification. Aim This study aimed to establish a new predictive model for KDSS using machine learning. Design Single-center, retrospective analysis. Methods Data of 746 children with KD admitted between July 2021 and June 2023 were collected including demographics, laboratory test results before intravenous immunoglobulin, and echocardiography results. Data were divided into training and testing sets in a 7:3 ratio. After feature engineering, predictive models were built using random forest (RF), logistic regression (LR), and Light Gradient Boosting Machine (LightGBM). Model performance was evaluated using area under the receiver operating characteristic curve (AUC), confusion matrix, average accuracy from five-fold cross-validation, while also analyzing misclassified cases. A simple early prediction tool was created based on the optimal model. Prospective data from five KDSS patients admitted between January and June 2024 and that of 15 randomly selected non-shock KD patients were used for external validation. Results CD3+ lymphocyte percentage(CD3+%) had the greatest impact on the model and was an important predictive factor for KDSS, followed by neutrophil-to-lymphocyte(NLR) ratio and Interleukin-6(IL-6). The LightGBM model performed best (AUC, 0.9388; average accuracy, 0.9675; 95% CI, 0.9612, 0.9737). Nine patients were misclassified (4.02%). RF and LR models showed slightly lower performance than the LightGBM model (prospective validation AUC, 0.9000; accuracy, 0.8500). Conclusion We constructed an early prediction model for KDSS and performed preliminary validation. This web-based prediction tool may assist clinicians in identifying high-risk pediatric patients to enhance monitoring/treatment.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
yyt发布了新的文献求助10
刚刚
2秒前
16秒前
可爱的函函应助白柏采纳,获得100
16秒前
YuxinChen完成签到 ,获得积分10
32秒前
43秒前
48秒前
美满尔蓝完成签到,获得积分10
52秒前
54秒前
Ldq应助科研通管家采纳,获得10
54秒前
科研通AI2S应助科研通管家采纳,获得10
54秒前
seven发布了新的文献求助10
59秒前
weibo完成签到,获得积分10
1分钟前
1分钟前
yb完成签到,获得积分10
1分钟前
隐形曼青应助六六采纳,获得10
1分钟前
1分钟前
1分钟前
lihuahui发布了新的文献求助10
1分钟前
1分钟前
2分钟前
2分钟前
2分钟前
2分钟前
手术刀完成签到 ,获得积分10
2分钟前
浮光完成签到,获得积分0
2分钟前
斯寜应助科研通管家采纳,获得10
2分钟前
CodeCraft应助科研通管家采纳,获得10
2分钟前
李爱国应助坦率的文龙采纳,获得10
3分钟前
3分钟前
3分钟前
3分钟前
周钰发布了新的文献求助10
3分钟前
秋天完成签到,获得积分10
3分钟前
3分钟前
3分钟前
白柏发布了新的文献求助100
3分钟前
3分钟前
3分钟前
4分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Acute Mountain Sickness 2000
Handbook of Milkfat Fractionation Technology and Application, by Kerry E. Kaylegian and Robert C. Lindsay, AOCS Press, 1995 1000
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
Affinity Designer Essentials: A Complete Guide to Vector Art: Your Ultimate Handbook for High-Quality Vector Graphics 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5064306
求助须知:如何正确求助?哪些是违规求助? 4287478
关于积分的说明 13359035
捐赠科研通 4105919
什么是DOI,文献DOI怎么找? 2248297
邀请新用户注册赠送积分活动 1253824
关于科研通互助平台的介绍 1185178