Ensemble-based deep learning techniques for customer churn prediction model

计算机科学 人工智能 集合预报 集成学习 机器学习 深度学习
作者
R. Siva Subramanian,B. Yamini,Kothandapani Sudha,S. Sivakumar
出处
期刊:Kybernetes [Emerald Publishing Limited]
被引量:14
标识
DOI:10.1108/k-08-2023-1516
摘要

Purpose The new customer churn prediction (CCP) utilizing deep learning is developed in this work. Initially, the data are collected from the WSDM-KKBox’s churn prediction challenge dataset. Here, the time-varying data and the static data are aggregated, and then the statistic features and deep features with the aid of statistical measures and “Visual Geometry Group 16 (VGG16)”, accordingly, and the features are considered as feature 1 and feature 2. Further, both features are forwarded to the weighted feature fusion phase, where the modified exploration of driving training-based optimization (ME-DTBO) is used for attaining the fused features. It is then given to the optimized and ensemble-based dilated deep learning (OEDDL) model, which is “Temporal Context Networks (DTCN), Recurrent Neural Networks (RNN), and Long-Short Term Memory (LSTM)”, where the optimization is performed with the aid of ME-DTBO model. Finally, the predicted outcomes are attained and assimilated over other classical models. Design/methodology/approach The features are forwarded to the weighted feature fusion phase, where the ME-DTBO is used for attaining the fused features. It is then given to the OEDDL model, which is “DTCN, RNN, and LSTM”, where the optimization is performed with the aid of the ME-DTBO model. Findings The accuracy of the implemented CCP system was raised by 54.5% of RNN, 56.3% of deep neural network (DNN), 58.1% of LSTM and 60% of RNN + DTCN + LSTM correspondingly when the learning percentage is 55. Originality/value The proposed CCP framework using the proposed ME-DTBO and OEDDL is accurate and enhances the prediction performance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
李健的粉丝团团长应助alan采纳,获得10
1秒前
2秒前
呆呆发布了新的文献求助10
2秒前
Ronnie完成签到,获得积分10
2秒前
2秒前
小手冰凉完成签到 ,获得积分10
2秒前
祭礼之龙完成签到,获得积分10
3秒前
文良颜丑完成签到,获得积分10
3秒前
蓝岳洋发布了新的文献求助10
3秒前
3秒前
gr完成签到,获得积分10
3秒前
4秒前
4秒前
糟糕的铁锤应助11哥采纳,获得50
4秒前
溫蒂完成签到,获得积分10
4秒前
乐乐应助myj采纳,获得10
4秒前
小蘑菇应助魔法披风采纳,获得10
5秒前
哒哒哒完成签到 ,获得积分10
6秒前
大萱发布了新的文献求助10
6秒前
缓慢的白开水完成签到,获得积分10
6秒前
6秒前
感动的红酒完成签到,获得积分10
7秒前
7秒前
2980083868发布了新的文献求助10
7秒前
文艺的又亦完成签到,获得积分10
7秒前
congguitar发布了新的文献求助10
8秒前
颿曦发布了新的文献求助10
8秒前
zys完成签到,获得积分10
8秒前
深情安青应助沙拉酱采纳,获得10
8秒前
和花花发布了新的文献求助10
8秒前
豆豆完成签到,获得积分10
9秒前
hannah完成签到,获得积分10
9秒前
石头发布了新的文献求助10
9秒前
yanyan完成签到,获得积分10
9秒前
10秒前
Rolo完成签到,获得积分10
10秒前
852应助討厭喝水采纳,获得10
10秒前
11秒前
11秒前
高分求助中
Applied Survey Data Analysis (第三版, 2025) 800
Assessing and Diagnosing Young Children with Neurodevelopmental Disorders (2nd Edition) 700
Images that translate 500
引进保护装置的分析评价八七年国外进口线路等保护运行情况介绍 500
Algorithmic Mathematics in Machine Learning 500
Handbook of Innovations in Political Psychology 400
Mapping the Stars: Celebrity, Metonymy, and the Networked Politics of Identity 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3841351
求助须知:如何正确求助?哪些是违规求助? 3383439
关于积分的说明 10529854
捐赠科研通 3103519
什么是DOI,文献DOI怎么找? 1709323
邀请新用户注册赠送积分活动 823096
科研通“疑难数据库(出版商)”最低求助积分说明 773813