The combined multilayer perceptron and logistic regression (MLP-LR) method better predicted the spread of Hyphantria cunea (Lepidoptera: Erebidae)

白蛾属 生物 生殖器鳞翅目 艾瑞毕科 逻辑回归 统计 动物 生态学 数学
作者
Hongwei Zhou,Zhongmin Xu,Yifan Chen,Yunbo Yan,Siyan Zhang,Xiao Lin,Di Cui,Jun Yang
出处
期刊:Journal of Economic Entomology [Oxford University Press]
卷期号:118 (3): 1156-1173
标识
DOI:10.1093/jee/toaf087
摘要

Abstract Hyphantria cunea (Lepidoptera: Erebidae) is one of the pests that pose a serious threat to forest and agronomic crops in China. Its spread is influenced by various factors, including environmental factors and anthropogenic factors, and the available data on pest spread and the influencing factor has nonlinear relationship. Additionally, the collection of pest data is often constrained, resulting in small datasets, a lack of long-term time series data, and issues such as missing data and anomalies. Traditional model-driven approaches have limitations in handling nonlinear relationships and high-dimensional data, while data-driven methods often lack interpretability and are prone to overfitting, ultimately leading to insufficient prediction accuracy. Therefore, this paper proposes the MLP-LR method, which combines logistic regression (LR) with a multilayer perceptron (MLP) to overcome these limitations. The model also used the Bayesian adaptive lasso method to select important influencing factors, that further improved the prediction accuracy. Based on H. cunea occurrence data in China, the current study demonstrated the stability and accuracy of the MLP-LR model on small datasets. The results showed that compared to traditional LR models and MLP independently, MLP-LR performs better in predicting the spread of H. cunea, effectively addressing the shortcomings of traditional methods. This study provides a new tool and perspective for forecasting and early warning of H. cunea outbreaks, offering important references for future research and its applications in the field.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
2秒前
殷勤的紫槐应助chengzi采纳,获得200
4秒前
4秒前
Bu完成签到,获得积分10
4秒前
欣慰如彤发布了新的文献求助10
5秒前
6秒前
橙子发布了新的文献求助10
6秒前
科目三应助CaiRong采纳,获得10
7秒前
7秒前
7秒前
7秒前
8秒前
受伤的靖完成签到,获得积分20
8秒前
星辰大海应助kim采纳,获得20
8秒前
9秒前
9秒前
衷医课代表完成签到,获得积分10
10秒前
小二发布了新的文献求助10
10秒前
tt发布了新的文献求助10
10秒前
11秒前
科研通AI5应助Syne_采纳,获得10
11秒前
骏驰天下发布了新的文献求助10
11秒前
神勇惜筠发布了新的文献求助30
12秒前
上官小怡发布了新的文献求助10
12秒前
Lewis发布了新的文献求助10
12秒前
海因伯顿完成签到,获得积分10
13秒前
Akim应助姜jiang采纳,获得10
13秒前
慕青应助llllliu采纳,获得10
14秒前
欣慰如彤完成签到,获得积分20
15秒前
15秒前
浮游应助橙子采纳,获得10
15秒前
JustinLiu完成签到,获得积分10
16秒前
ZOE应助健壮的凉面采纳,获得30
16秒前
17秒前
GPTea举报故意的驳求助涉嫌违规
17秒前
芸芸众生完成签到,获得积分10
17秒前
17秒前
万能图书馆应助skevvecl采纳,获得10
18秒前
高分求助中
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
哈工大泛函分析教案课件、“72小时速成泛函分析:从入门到入土.PDF”等 660
Comparing natural with chemical additive production 500
The Leucovorin Guide for Parents: Understanding Autism’s Folate 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.) 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5208491
求助须知:如何正确求助?哪些是违规求助? 4386000
关于积分的说明 13659449
捐赠科研通 4244993
什么是DOI,文献DOI怎么找? 2329043
邀请新用户注册赠送积分活动 1326831
关于科研通互助平台的介绍 1279056