Neural architecture search algorithm to optimize deep Transformer model for fault detection in electrical power distribution systems

计算机科学 变压器 人工神经网络 故障检测与隔离 算法 人工智能 电压 工程类 电气工程 执行机构
作者
Jibin B. Thomas,Shihabudheen K.V.
出处
期刊:Engineering Applications of Artificial Intelligence [Elsevier BV]
卷期号:120: 105890-105890 被引量:27
标识
DOI:10.1016/j.engappai.2023.105890
摘要

This paper proposes a neural architecture search algorithm for obtaining an optimum Transformer model to detect and localize different power system faults and uncertain conditions, such as symmetrical shunt faults, unsymmetrical shunt faults, high-impedance faults, switching conditions (capacitor switching, load switching, transformer switching, DG switching and feeder switching), insulator leakage and transformer inrush current in a distribution system. The Transformer model was proposed to tackle the high memory consumption of the deep CNN attention models and the long-term dependency problem of the RNN attention models. There exist different types of attention mechanisms and feedforward networks for designing a Transformer architecture. Hand engineering of these layers can be inefficient and time-consuming. Therefore, this paper makes use of the Differential Architecture Search (DARTS) algorithm to automatically generate optimal Transformer architectures with less search time cost. The algorithm achieves this by making the search process differentiable to architecture hyperparameters thus making the network search process an end-to-end problem. The proposed model attempts to automatically detect faults in a bus using current measurements from distant monitoring points. The proposed fault analysis was conducted on the standard IEEE 14 bus distribution system and the VSB power line fault detection database. The proposed model was found to produce better performance on the test database when evaluated using F1-Score (99.4% for fault type classification and 97.7% for fault location classification), Matthews Correlation Coefficient (MCC) (99.3% for fault type classification and 97.6% for fault location classification), accuracy and Area Under the Curve (AUC). The architecture transferability of the proposed method was also studied using real-world power line data for fault detection.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研不懂12完成签到,获得积分20
刚刚
丘比特应助小徐采纳,获得10
1秒前
2秒前
自然的雁芙完成签到 ,获得积分10
3秒前
鹿友绿完成签到,获得积分10
4秒前
大卫完成签到 ,获得积分10
5秒前
秋刀鱼不过期完成签到 ,获得积分10
5秒前
5秒前
haipronl发布了新的文献求助30
8秒前
丘比特应助落雁沙采纳,获得10
11秒前
2以李完成签到,获得积分10
12秒前
15秒前
17秒前
紧张的毛衣完成签到,获得积分10
17秒前
田様应助子衿采纳,获得10
21秒前
浑灵安发布了新的文献求助10
22秒前
加加林发布了新的文献求助30
23秒前
23秒前
28秒前
SciGPT应助fabian采纳,获得10
29秒前
大脸完成签到,获得积分10
31秒前
深情安青应助谨慎达采纳,获得10
31秒前
zho应助Ring采纳,获得10
32秒前
zhangwe关注了科研通微信公众号
33秒前
汉堡包应助kourosz采纳,获得10
33秒前
小奥雄发布了新的文献求助10
33秒前
33秒前
许甜甜鸭应助123采纳,获得20
34秒前
TTT完成签到,获得积分10
34秒前
35秒前
Somnolence咩发布了新的文献求助10
37秒前
37秒前
41秒前
薛雨佳发布了新的文献求助10
43秒前
43秒前
43秒前
小奥雄完成签到,获得积分10
44秒前
45秒前
Oliver发布了新的文献求助10
45秒前
David完成签到 ,获得积分10
46秒前
高分求助中
Mass producing individuality 600
Разработка метода ускоренного контроля качества электрохромных устройств 500
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
Epigenetic Drug Discovery 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3823649
求助须知:如何正确求助?哪些是违规求助? 3366071
关于积分的说明 10438723
捐赠科研通 3085191
什么是DOI,文献DOI怎么找? 1697245
邀请新用户注册赠送积分活动 816302
科研通“疑难数据库(出版商)”最低求助积分说明 769492