Automated detection and classification of patient–ventilator asynchrony by means of machine learning and simulated data

概化理论 计算机科学 异步(计算机编程) 机械通风 重症监护 人工智能 机器学习 任务(项目管理) 重症监护室 医学 重症监护医学 工程类 计算机网络 统计 数学 异步通信 系统工程 精神科
作者
Tom Bakkes,Anouk van Diepen,Ashley J.R. De Bie,Leon J. Montenij,Francesco Mojoli,R. Arthur Bouwman,Massimo Mischi,P.H. Woerlee,Simona Turco
出处
期刊:Computer Methods and Programs in Biomedicine [Elsevier BV]
卷期号:230: 107333-107333 被引量:14
标识
DOI:10.1016/j.cmpb.2022.107333
摘要

Mechanical ventilation is a lifesaving treatment for critically ill patients in an Intensive Care Unit (ICU) or during surgery. However, one potential harm of mechanical ventilation is related to patient-ventilator asynchrony (PVA). PVA can cause discomfort to the patient, damage to the lungs, and an increase in the length of stay in the ICU and on the ventilator. Therefore, automated detection algorithms are being developed to detect and classify PVAs, with the goal of optimizing mechanical ventilation. However, the development of these algorithms often requires large labeled datasets; these are generally difficult to obtain, as their collection and labeling is a time-consuming and labor-intensive task, which needs to be performed by clinical experts.In this work, we aimed to develop a computer algorithm for the automatic detection and classification of PVA. The algorithm employs a neural network for the detection of the breath of the patient. The development of the algorithm was aided by simulations from a recently published model of the patient-ventilator interaction.The proposed method was effective, providing an algorithm with reliable detection and classification results of over 90% accuracy. Besides presenting a detection and classification algorithm for a variety of PVAs, here we show that using simulated data in combination with clinical data increases the variability in the training dataset, leading to a gain in performance and generalizability.In the future, these algorithms can be utilized to gain a better understanding of the clinical impact of PVAs and help clinicians to better monitor their ventilation strategies.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
蜗居发布了新的文献求助10
刚刚
1秒前
1秒前
Orange应助swsx采纳,获得10
2秒前
CC完成签到,获得积分10
3秒前
高大厉完成签到,获得积分10
3秒前
lor完成签到,获得积分10
4秒前
魔芋发布了新的文献求助10
4秒前
白衣未央发布了新的文献求助10
4秒前
5秒前
zzzz发布了新的文献求助10
7秒前
刘明坤完成签到 ,获得积分10
7秒前
9秒前
阳光完成签到,获得积分10
9秒前
10秒前
两滴水的云完成签到,获得积分10
10秒前
魔芋完成签到,获得积分20
11秒前
13秒前
14秒前
zzz发布了新的文献求助10
15秒前
白开水完成签到,获得积分10
16秒前
啵啵完成签到 ,获得积分10
18秒前
zzzz完成签到,获得积分20
19秒前
19秒前
研友_8yX0xZ完成签到,获得积分10
20秒前
无敌嘎嘎完成签到,获得积分10
20秒前
Kk完成签到,获得积分10
21秒前
混元形意太极门完成签到,获得积分10
21秒前
ding应助ceci采纳,获得30
24秒前
liubo完成签到,获得积分10
25秒前
我是老大应助okko采纳,获得10
27秒前
TAA66完成签到,获得积分10
29秒前
今后应助河鱼小白脸采纳,获得10
29秒前
宇文无施完成签到,获得积分10
30秒前
完美世界应助JC采纳,获得10
31秒前
十一发布了新的文献求助10
31秒前
32秒前
33秒前
可爱的函函应助扳迪采纳,获得10
35秒前
希望天下0贩的0应助蜉蝣采纳,获得10
36秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Technologies supporting mass customization of apparel: A pilot project 450
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
Brain and Heart The Triumphs and Struggles of a Pediatric Neurosurgeon 400
Cybersecurity Blueprint – Transitioning to Tech 400
Mixing the elements of mass customisation 400
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3785875
求助须知:如何正确求助?哪些是违规求助? 3331226
关于积分的说明 10250759
捐赠科研通 3046728
什么是DOI,文献DOI怎么找? 1672190
邀请新用户注册赠送积分活动 801071
科研通“疑难数据库(出版商)”最低求助积分说明 759979