Deep Gaussian mixture model for unsupervised image segmentation

混合模型 人工智能 图像(数学) 模式识别(心理学) 分割 计算机科学 图像分割 计算机视觉
作者
Matthias Schwab,Agnes Mayr,Markus Haltmeier
出处
期刊:Cornell University - arXiv
标识
DOI:10.48550/arxiv.2404.12252
摘要

The recent emergence of deep learning has led to a great deal of work on designing supervised deep semantic segmentation algorithms. As in many tasks sufficient pixel-level labels are very difficult to obtain, we propose a method which combines a Gaussian mixture model (GMM) with unsupervised deep learning techniques. In the standard GMM the pixel values with each sub-region are modelled by a Gaussian distribution. In order to identify the different regions, the parameter vector that minimizes the negative log-likelihood (NLL) function regarding the GMM has to be approximated. For this task, usually iterative optimization methods such as the expectation-maximization (EM) algorithm are used. In this paper, we propose to estimate these parameters directly from the image using a convolutional neural network (CNN). We thus change the iterative procedure in the EM algorithm replacing the expectation-step by a gradient-step with regard to the networks parameters. This means that the network is trained to minimize the NLL function of the GMM which comes with at least two advantages. As once trained, the network is able to predict label probabilities very quickly compared with time consuming iterative optimization methods. Secondly, due to the deep image prior our method is able to partially overcome one of the main disadvantages of GMM, which is not taking into account correlation between neighboring pixels, as it assumes independence between them. We demonstrate the advantages of our method in various experiments on the example of myocardial infarct segmentation on multi-sequence MRI images.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
zzuwxj发布了新的文献求助10
1秒前
科目三应助甜甜的紫菜采纳,获得10
1秒前
DDDiamond发布了新的文献求助10
2秒前
张博发布了新的文献求助20
2秒前
GG发布了新的文献求助30
2秒前
香蕉觅云应助cloud采纳,获得10
2秒前
3秒前
CHE发布了新的文献求助10
3秒前
4秒前
在水一方应助DDDiamond采纳,获得10
5秒前
6秒前
ttt发布了新的文献求助10
6秒前
6秒前
Jae关闭了Jae文献求助
6秒前
脑洞疼应助Gracie采纳,获得10
7秒前
万松辉完成签到,获得积分10
8秒前
8秒前
Lin完成签到,获得积分10
8秒前
hanzhipad应助shasha采纳,获得20
9秒前
9秒前
CodeCraft应助Jane采纳,获得10
9秒前
10秒前
David发布了新的文献求助10
10秒前
Kahanto发布了新的文献求助10
11秒前
14秒前
14秒前
小星星完成签到 ,获得积分10
16秒前
河狸完成签到 ,获得积分10
17秒前
李爱国应助fj采纳,获得10
20秒前
20秒前
21秒前
sususu完成签到,获得积分20
21秒前
李先生完成签到 ,获得积分10
22秒前
11发布了新的文献求助10
22秒前
Owen应助nnbn采纳,获得10
22秒前
科研通AI5应助zhanlang采纳,获得10
25秒前
25秒前
25秒前
25秒前
米饭辣椒发布了新的文献求助10
26秒前
高分求助中
Mass producing individuality 600
非光滑分析与控制理论 500
Разработка метода ускоренного контроля качества электрохромных устройств 500
A Combined Chronic Toxicity and Carcinogenicity Study of ε-Polylysine in the Rat 400
Advances in Underwater Acoustics, Structural Acoustics, and Computational Methodologies 300
The Oxford Handbook of Video Game Music and Sound 200
TM 5-855-1(Fundamentals of protective design for conventional weapons) 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3826252
求助须知:如何正确求助?哪些是违规求助? 3368664
关于积分的说明 10451634
捐赠科研通 3088000
什么是DOI,文献DOI怎么找? 1698916
邀请新用户注册赠送积分活动 817222
科研通“疑难数据库(出版商)”最低求助积分说明 770084