A ship trajectory prediction method based on GAT and LSTM

弹道 计算机科学 稳健性(进化) 图形 碰撞 人工智能 数据挖掘 生物化学 化学 物理 理论计算机科学 天文 基因 计算机安全
作者
Jiansen Zhao,Zhongwei Yan,Zhenzhen Zhou,Xinqiang Chen,Bing Wu,Shengzheng Wang
出处
期刊:Ocean Engineering [Elsevier BV]
卷期号:289: 116159-116159 被引量:31
标识
DOI:10.1016/j.oceaneng.2023.116159
摘要

Ship trajectory prediction plays an important role in ship route planning and collision avoidance in the development of autonomous ships. Previous models related to ship trajectory prediction have mainly focused on exploiting spatial and temporal correlation, but the accuracy and reliability of their predictions may be limited. To address this issue, this study introduces a graph attention network (GAT) and long short-term memory (LSTM) to predict ship trajectories. First, a graph network of ship trajectories is constructed based on the dependency relationship between ship trajectory data. GAT-LSTM uses GAT to extract the spatial features of ship trajectory data, while LSTM is introduced to learn the temporal features of ship trajectory data; finally, the prediction results are obtained. In this study, three real ship trajectory datasets from the AIS are used to verify the effectiveness of the proposed model and compare it with other prediction models. The experiments show that GAT-LSTM always obtains better values of the evaluation metrics than other prediction models. The model proposed in this study has high robustness in ship trajectory prediction, and the accurate prediction of ship trajectories has positive significance for maritime traffic control and safe navigation of ships.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
柯镇恶发布了新的文献求助10
刚刚
大个应助科研轮回采纳,获得10
刚刚
1秒前
wind完成签到,获得积分10
2秒前
3秒前
5秒前
5秒前
LB发布了新的文献求助10
6秒前
guozizi发布了新的文献求助10
6秒前
8秒前
8秒前
柯镇恶完成签到,获得积分10
9秒前
思源应助醉爱星星采纳,获得30
10秒前
NN发布了新的文献求助30
11秒前
12秒前
ZLY发布了新的文献求助10
13秒前
共享精神应助LB采纳,获得10
14秒前
毓秀完成签到 ,获得积分10
14秒前
善学以致用应助彬子采纳,获得10
15秒前
科研轮回发布了新的文献求助10
17秒前
抱小熊睡觉完成签到,获得积分10
17秒前
NN发布了新的文献求助30
23秒前
CipherSage应助冬日可爱采纳,获得10
26秒前
明风完成签到 ,获得积分10
26秒前
爆米花应助犹豫帆布鞋采纳,获得10
26秒前
26秒前
27秒前
明风关注了科研通微信公众号
30秒前
30秒前
小马甲应助qq糖采纳,获得10
31秒前
31秒前
醉爱星星发布了新的文献求助30
32秒前
wzm发布了新的文献求助10
32秒前
科研通AI5应助彭鑫采纳,获得10
32秒前
34秒前
34秒前
34秒前
勤劳柚子应助纯真的筝采纳,获得10
36秒前
37秒前
斯文含双发布了新的文献求助10
38秒前
高分求助中
Worked Bone, Antler, Ivory, and Keratinous Materials 1000
Mass producing individuality 600
Algorithmic Mathematics in Machine Learning 500
Разработка метода ускоренного контроля качества электрохромных устройств 500
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
Advances in Underwater Acoustics, Structural Acoustics, and Computational Methodologies 300
Limes XXIII Sonderband 4 / II Proceedings of the 23rd International Congress of Roman Frontier Studies Ingolstadt 2015 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3829234
求助须知:如何正确求助?哪些是违规求助? 3371936
关于积分的说明 10469766
捐赠科研通 3091535
什么是DOI,文献DOI怎么找? 1701173
邀请新用户注册赠送积分活动 818199
科研通“疑难数据库(出版商)”最低求助积分说明 770765