计算机视觉
激光雷达
人工智能
里程计
计算机科学
惯性测量装置
稳健性(进化)
传感器融合
同时定位和映射
校准
融合
点云
遥感
机器人
地理
数学
移动机器人
统计
基因
哲学
生物化学
化学
语言学
作者
Xingxing Zuo,Patrick Geneva,Woosik Lee,Yong Liu,Guoquan Huang
标识
DOI:10.1109/iros40897.2019.8967746
摘要
This paper presents a tightly-coupled multi-sensor fusion algorithm termed LiDAR-inertial-camera fusion (LIC-Fusion), which efficiently fuses IMU measurements, sparse visual features, and extracted LiDAR points. In particular, the proposed LIC-Fusion performs online spatial and temporal sensor calibration between all three asynchronous sensors, in order to compensate for possible calibration variations. The key contribution is the optimal (up to linearization errors) multi-modal sensor fusion of detected and tracked sparse edge/surf feature points from LiDAR scans within an efficient MSCKF-based framework, alongside sparse visual feature observations and IMU readings. We perform extensive experiments in both indoor and outdoor environments, showing that the proposed LIC-Fusion outperforms the state-of-the-art visual-inertial odometry (VIO) and LiDAR odometry methods in terms of estimation accuracy and robustness to aggressive motions.
科研通智能强力驱动
Strongly Powered by AbleSci AI