Evolving Schema for Employing Network Biology Approaches to Understand Pulmonary Hypertension

疾病 生物网络 鉴定(生物学) 还原论 生物信息学 基因组学 计算机科学 药物开发 模拟生物系统 蛋白质组学 基因调控网络 肺动脉高压 计算生物学 生物 医学 系统生物学 生物信息学 基因 药品 遗传学 药理学 基因组 认识论 哲学 病理 植物
作者
Shohini Ghosh-Choudhary,Stephen L. Chan
出处
期刊:Advances in Experimental Medicine and Biology [Springer Nature]
标识
DOI:10.1007/978-3-030-63046-1_4
摘要

Reductionist approaches have served as the cornerstone for traditional mechanistic endeavors in biomedical research. However, for pulmonary hypertension (PH), a relatively rare but deadly vascular disease of the lungs, the use of traditional reductionist approaches has failed to define the complexities of pathogenesis. With the development of new -omics platforms (i.e., genomics, transcriptomics, proteomics, and metabolomics, among others), network biology approaches have offered new pipelines for discovery of human disease pathogenesis. Human disease processes are driven by multiple genes that are dysregulated which are affected by regulatory networks. Network theory allows for the identification of such gene clusters which are dysregulated in various disease states. This framework may in part explain why current therapeutics that seek to target a single part of a dysregulated cluster may fail to provide clinically significant improvements. Correspondingly, network biology could further the development of novel therapeutics which target clusters of "disease genes" so that a disease phenotype can be more robustly addressed. In this chapter, we seek to explain the theory behind network biology approaches to identify drivers of disease as well as how network biology approaches have been used in the field of PH. Furthermore, we discuss an example of in silico methodology using network pharmacology in conjunction with gene networks tools to identify drugs and drug targets. We discuss similarities between the pathogenesis of PH and other disease states, specifically cancer, and how tools developed for cancer may be repurposed to fill the gaps in research in PH. Finally, we discuss new approaches which seek to integrate clinical health record data into networks so that correlations between disease genes and clinical parameters can be explored in the context of this disease.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
卷王完成签到,获得积分10
2秒前
2秒前
独特的帽子发布了新的文献求助100
4秒前
酷炫抽屉完成签到 ,获得积分10
4秒前
seayoa完成签到,获得积分20
4秒前
Nick完成签到 ,获得积分10
5秒前
新威宝贝发布了新的文献求助10
6秒前
整齐乐荷发布了新的文献求助10
8秒前
体贴坤坤完成签到 ,获得积分10
8秒前
8秒前
jenningseastera应助羽墨空空采纳,获得10
8秒前
医痞子完成签到,获得积分10
9秒前
sevenseven完成签到,获得积分10
10秒前
cc完成签到 ,获得积分10
11秒前
guoxihan完成签到,获得积分10
12秒前
⊙▽⊙完成签到,获得积分10
18秒前
华仔应助专注的语堂采纳,获得10
19秒前
hanzhipad应助整齐乐荷采纳,获得10
20秒前
24秒前
棠真应助葡萄小伊ovo采纳,获得20
24秒前
叶叶叶完成签到,获得积分10
25秒前
康轲完成签到,获得积分10
25秒前
雪白卿发布了新的文献求助30
25秒前
26秒前
anthea完成签到 ,获得积分10
26秒前
迷你的隶完成签到,获得积分10
27秒前
jenningseastera应助lwl666采纳,获得10
27秒前
Ava应助摆烂采纳,获得10
28秒前
骨科AAA完成签到,获得积分10
29秒前
皮皮球发布了新的文献求助10
30秒前
30秒前
共享精神应助科学家采纳,获得10
30秒前
30秒前
思源应助欢喜海采纳,获得30
31秒前
31秒前
深情安青应助鹿鹤采纳,获得10
32秒前
魁梧的鸿煊完成签到 ,获得积分10
33秒前
Muller发布了新的文献求助10
33秒前
swimming完成签到 ,获得积分10
34秒前
高分求助中
Mass producing individuality 600
Разработка метода ускоренного контроля качества электрохромных устройств 500
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
Epigenetic Drug Discovery 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3823474
求助须知:如何正确求助?哪些是违规求助? 3365872
关于积分的说明 10437928
捐赠科研通 3085043
什么是DOI,文献DOI怎么找? 1697106
邀请新用户注册赠送积分活动 816191
科研通“疑难数据库(出版商)”最低求助积分说明 769442