The predictive value of microbiological findings on teeth, internal and external implant portions in clinical decision making

种植周围炎 植入 牙科 医学 探血 预测值 佩里 牙种植体 牙周炎 外科 内科学
作者
Luigi Canullo,Sandro Radovanović,Boris Delibašić,Juan Antonio Blaya-Tárraga,David Peñarrocha‐Oltra,Mia Rakić
出处
期刊:Clinical Oral Implants Research [Wiley]
卷期号:28 (5): 512-519 被引量:34
标识
DOI:10.1111/clr.12828
摘要

Abstract Aim The primary aim of this study was to evaluate 23 pathogens associated with peri‐implantitis at inner part of implant connections, in peri‐implant and periodontal pockets between patients suffering peri‐implantitis and participants with healthy peri‐implant tissues; the secondary aim was to estimate the predictive value of microbiological profile in patients wearing dental implants using data mining methods. Material and Methods Fifty participants included in the present case─control study were scheduled for collection of plaque samples from the peri‐implant pockets, internal connection, and periodontal pocket. Real‐time polymerase chain reaction was performed to quantify 23 pathogens. Three predictive models were developed using C4.5 decision trees to estimate the predictive value of microbiological profile between three experimental sites. Results The final sample included 47 patients (22 healthy controls and 25 diseased cases), 90 implants (43 with healthy peri‐implant tissues and 47 affected by peri‐implantitis). Total and mean pathogen counts at inner portions of the implant connection, in peri‐implant and periodontal pockets were generally increased in peri‐implantitis patients when compared to healthy controls. The inner portion of the implant connection, the periodontal pocket and peri‐implant pocket, respectively, presented a predictive value of microbiologic profile of 82.78%, 94.31%, and 97.5% of accuracy. Conclusion This study showed that microbiological profile at all three experimental sites is differently characterized between patients suffering peri‐implantitis and healthy controls. Data mining analysis identified Parvimonas micra as a highly accurate predictor of peri‐implantitis when present in peri‐implant pocket while this method generally seems to be promising for diagnosis of such complex infections.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小竹子完成签到,获得积分10
1秒前
Maydalian完成签到,获得积分10
1秒前
zm发布了新的文献求助10
2秒前
2秒前
BowieHuang应助一二采纳,获得10
2秒前
量子星尘发布了新的文献求助10
3秒前
HYC完成签到,获得积分10
4秒前
今后应助391X小king采纳,获得10
4秒前
碧蓝之柔完成签到,获得积分10
4秒前
星辰大海应助jess采纳,获得10
4秒前
泥蝶完成签到 ,获得积分10
5秒前
研友_LOqqmZ完成签到 ,获得积分10
5秒前
5秒前
5秒前
大Doctor陈发布了新的文献求助10
5秒前
Wendy完成签到,获得积分10
5秒前
gogogo完成签到 ,获得积分10
6秒前
S1mple_gentleman完成签到,获得积分10
6秒前
ding应助祝我论文产出采纳,获得10
6秒前
火星上白安完成签到,获得积分10
6秒前
祺屿梦完成签到,获得积分10
6秒前
不羁的风完成签到,获得积分10
8秒前
咩鹿酱完成签到,获得积分10
8秒前
8秒前
量子星尘发布了新的文献求助10
8秒前
9秒前
吴晨曦完成签到,获得积分10
9秒前
wzz发布了新的文献求助10
9秒前
阿冲发布了新的文献求助10
9秒前
李健应助qwert采纳,获得10
9秒前
9秒前
浅陌初心完成签到 ,获得积分10
9秒前
Lishumin完成签到,获得积分10
9秒前
欢喜的元霜完成签到,获得积分10
10秒前
lcdamoy完成签到,获得积分10
10秒前
尧尧完成签到,获得积分10
11秒前
咿呀咿呀哟完成签到,获得积分0
11秒前
66发布了新的文献求助10
11秒前
明灯三千完成签到,获得积分10
11秒前
Lishumin发布了新的文献求助10
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
Aerospace Engineering Education During the First Century of Flight 2000
从k到英国情人 1700
„Semitische Wissenschaften“? 1510
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5773777
求助须知:如何正确求助?哪些是违规求助? 5613486
关于积分的说明 15432599
捐赠科研通 4906156
什么是DOI,文献DOI怎么找? 2640083
邀请新用户注册赠送积分活动 1587955
关于科研通互助平台的介绍 1542987