Controlled Synthesis of Flower-like Hierarchical NiCo-Layered Double Hydroxide Integrated with Metal–Organic Framework-Derived Co@C for Supercapacitors

超级电容器 材料科学 金属有机骨架 电容 化学工程 层状双氢氧化物 纳米技术 电极 氢氧化物 金属氢氧化物 金属 有机化学 吸附 冶金 化学 物理化学 工程类
作者
Junzhuo Yuan,Yingxin Li,Guoge Lu,Zhan Gao,Fuxiang Wei,Jiqiu Qi,Yanwei Sui,Qingqing Yan,Li Wang
出处
期刊:ACS Applied Materials & Interfaces [American Chemical Society]
卷期号:15 (30): 36143-36153 被引量:40
标识
DOI:10.1021/acsami.3c05061
摘要

Layered double hydroxides (LDHs) have come to the foreground recently, considering their unique layered structure and short ion channels when they act as electrode materials for supercapacitors (SCs). However, due to their poor rate and cycle performance, they are not highly sought after in the market. Therefore, a flower-like hierarchical NiCo-LDH@C nanostructure with flake NiCo-LDH anchored on the carbon skeleton has emerged here, which is constructed by calcination and hydrothermal reaction and applying flake ZIF-67 as a precursor. In this structure, NiCo-LDH grows outward with abundant and homogeneously distributed Co nanoparticles on Co@C as nucleation sites, forming a hierarchical structure that is combined tightly with the carbon skeleton. The flower-like hierarchical nanostructures formed by the composite of metal–organic frameworks (MOFs) and LDHs have successfully enhanced the cycle and rate performance of LDH materials on the strength of strong structural stability, large specific surface area, and unique cooperative effect. The NiCo-LDH@C electrode displays superb electrochemical performance, with a specific capacitance of 2210.6 F g–1 at 1 A g–1 and 88.8% capacitance retention at 10 A g–1. Furthermore, the asymmetric supercapacitor (ASC) constructed with NiCo-LDH@C//RGO reveals a remarkable energy density of 45.02 W h kg–1 with a power density of 799.96 W kg–1. This project aims to propose a novel avenue to exploit NiCo-LDH electrode materials and provide theory and methodological guidance for deriving complex structures from MOF derivatives.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
香蕉觅云应助陆离采纳,获得10
刚刚
刻苦元槐完成签到,获得积分10
刚刚
白白完成签到 ,获得积分10
刚刚
Aimer完成签到,获得积分10
1秒前
badada完成签到,获得积分10
1秒前
1秒前
1秒前
大模型应助zhengke924采纳,获得10
1秒前
zzz完成签到,获得积分10
2秒前
糕糕发布了新的文献求助10
2秒前
自然的雁蓉完成签到,获得积分20
2秒前
3秒前
3秒前
3秒前
空城完成签到 ,获得积分10
3秒前
丘比特应助小乌龟采纳,获得10
4秒前
坦率夕阳完成签到,获得积分10
4秒前
谦让寻凝完成签到 ,获得积分10
4秒前
杋困了完成签到 ,获得积分10
5秒前
学渣小Robert完成签到,获得积分10
5秒前
5秒前
5秒前
Arueliano完成签到,获得积分10
5秒前
ZN发布了新的文献求助10
6秒前
科研通AI5应助zyyyy采纳,获得10
6秒前
流川封完成签到,获得积分10
6秒前
大兵哥发布了新的文献求助10
6秒前
情怀应助帅气的小鸭子采纳,获得10
7秒前
赘婿应助CAIJING采纳,获得10
7秒前
HEAR完成签到,获得积分10
7秒前
体贴的乐松完成签到,获得积分10
7秒前
行走发布了新的文献求助10
7秒前
8秒前
Logan完成签到,获得积分10
9秒前
深情安青应助子车雁开采纳,获得30
9秒前
科研通AI5应助许欣瑞采纳,获得10
9秒前
大地完成签到,获得积分10
9秒前
9秒前
汉堡完成签到,获得积分20
10秒前
Phantasyice完成签到,获得积分10
10秒前
高分求助中
Thinking Small and Large 500
Algorithmic Mathematics in Machine Learning 500
Handbook of Innovations in Political Psychology 400
Mapping the Stars: Celebrity, Metonymy, and the Networked Politics of Identity 400
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
Engineering the boosting of the magnetic Purcell factor with a composite structure based on nanodisk and ring resonators 240
Cardiopulmonary Bypass 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3837940
求助须知:如何正确求助?哪些是违规求助? 3380118
关于积分的说明 10512448
捐赠科研通 3099689
什么是DOI,文献DOI怎么找? 1707202
邀请新用户注册赠送积分活动 821502
科研通“疑难数据库(出版商)”最低求助积分说明 772667