CEHMR: Curriculum learning enhanced hierarchical multi-label classification for medication recommendation

计算机科学 机器学习 人工智能 分类器(UML) 课程 特征学习 等级制度 心理学 教育学 市场经济 经济
作者
Mengxuan Sun,Jinghao Niu,Xuebing Yang,Yifan Gu,Wensheng Zhang
出处
期刊:Artificial Intelligence in Medicine [Elsevier BV]
卷期号:143: 102613-102613 被引量:4
标识
DOI:10.1016/j.artmed.2023.102613
摘要

The medication recommendation (MR) or medication combination prediction task aims to predict effective prescriptions given accurate patient representations derived from electronic health records (EHRs), which contributes to improving the quality of clinical decision-making, especially for patients with multi-morbidity. Although in recent years deep learning technology has achieved great success in MR, the performance of current multi-label based MR solutions is unsatisfactory. They mainly focus on improving the patient representation module and modeling the medication label dependencies such as drug-drug interaction (DDI) correlation and co-occurrence relationship. However, the hierarchical dependency among medication labels and diversity of difficulty among MR training examples lack sufficient consideration. In this paper, we propose a framework of Curriculum learning Enhanced Hierarchical multi-label classification for MR (CEHMR). Motivated by the category hierarchy of medications which organizes standard medication codes in a hierarchical structure, we utilize it to provide more trustworthy prior knowledge for modeling label dependency. Specifically, we design a hierarchical multi-label classifier with a learnable gate fusion layer, to simultaneously capture the level-independent (local) and level-dependent (global) hierarchical information in the medication hierarchy. In addition, to overcome the diversity of training example difficulties, and progressively achieve a smoother training process, we introduce a bootstrap-based curriculum learning strategy. Hence, the example difficulty can be measured based on the predictive performance of the MR model, and then all training examples would be retrained from easy to hard under the guidance of a predefined training scheduler. Experiments on the real-world medical MIMIC-III database demonstrate that the proposed framework can achieve state-of-the-art performance compared with seven representative baselines, and extensive ablation studies validate the effectiveness of each component of CEHMR.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
monere发布了新的文献求助10
刚刚
1秒前
老迟到的芹菜完成签到,获得积分10
1秒前
2秒前
He完成签到,获得积分20
3秒前
Ys驳回了乐乐应助
6秒前
啊咧咧完成签到 ,获得积分10
6秒前
852应助木目耶耶耶采纳,获得10
8秒前
JamesPei应助小黑采纳,获得10
8秒前
福明明发布了新的文献求助10
8秒前
siyuan完成签到,获得积分10
8秒前
胡萝卜发布了新的文献求助10
9秒前
蝈蝈蝈完成签到 ,获得积分10
9秒前
豆浆油条完成签到 ,获得积分10
9秒前
9秒前
11秒前
汉堡包应助monere采纳,获得10
11秒前
酷波er应助材化小将军采纳,获得10
12秒前
13秒前
mhc完成签到,获得积分20
14秒前
panpan完成签到,获得积分10
15秒前
tthxq发布了新的文献求助10
18秒前
18秒前
20秒前
香蕉觅云应助LisaZhuo采纳,获得10
20秒前
科研通AI5应助李海洋采纳,获得10
22秒前
23秒前
所所应助知性的真采纳,获得10
25秒前
吴未完成签到,获得积分10
26秒前
小黑发布了新的文献求助10
26秒前
28秒前
Lee完成签到,获得积分10
30秒前
30秒前
财来完成签到 ,获得积分10
31秒前
31秒前
赘婿应助科研通管家采纳,获得10
31秒前
科研通AI2S应助科研通管家采纳,获得10
31秒前
CipherSage应助科研通管家采纳,获得10
31秒前
在水一方应助科研通管家采纳,获得10
32秒前
搜集达人应助科研通管家采纳,获得10
32秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Technologies supporting mass customization of apparel: A pilot project 450
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3790999
求助须知:如何正确求助?哪些是违规求助? 3335765
关于积分的说明 10276539
捐赠科研通 3052313
什么是DOI,文献DOI怎么找? 1675079
邀请新用户注册赠送积分活动 803082
科研通“疑难数据库(出版商)”最低求助积分说明 761056