压缩传感
计算机科学
压缩比
功率消耗
信号(编程语言)
压缩(物理)
数据压缩
信噪比(成像)
噪音(视频)
脑电图
模式识别(心理学)
人工智能
信号处理
语音识别
功率(物理)
电信
计算机硬件
工程类
医学
材料科学
数字信号处理
汽车工程
复合材料
精神科
程序设计语言
物理
图像(数学)
内燃机
量子力学
作者
Darren Craven,Brian McGinley,Liam Kilmartin,Martin Glavin,Edward Jones
标识
DOI:10.1109/jbhi.2014.2327194
摘要
This paper provides a comprehensive review of compressed sensing or compressive sampling (CS) in bioelectric signal compression applications. The aim is to provide a detailed analysis of the current trends in CS, focusing on the advantages and disadvantages in compressing different biosignals and its suitability for deployment in embedded hardware. Performance metrics such as percent root-mean-squared difference (PRD), signal-to-noise ratio (SNR), and power consumption are used to objectively quantify the capabilities of CS. Furthermore, CS is compared to state-of-the-art compression algorithms in compressing electrocardiogram (ECG) and electroencephalography (EEG) as examples of typical biosignals. The main technical challenges associated with CS are discussed along with the predicted future trends.
科研通智能强力驱动
Strongly Powered by AbleSci AI