Deep Stroop: Using eye tracking and speech processing to characterize people with neurodegenerative disorders while performing the Stroop Test

斯特罗普效应 心理学 眼球运动 眼动 中央凹 考试(生物学) 认知心理学 复制 物理医学与康复 听力学 神经科学 计算机科学 医学 人工智能 认知 统计 眼科 古生物学 生物 视网膜 数学
作者
Trevor Meyer,Anna Favaro,Tianyu Cao,Ankur Butala,Esther S. Oh,Chelsie Motley,Pedro P. Irazoqui,Najim Dehak,Laureano Moro-Velázquez
出处
期刊:Cold Spring Harbor Laboratory - medRxiv
标识
DOI:10.1101/2023.05.30.23290742
摘要

Abstract Although many neurodegenerative diseases affect different neural circuits, they often express complex and overlapping symptom profiles making them difficult to differentiate precisely. Current methods of analyzing patients are limited to bedside examination, patient self-rating scales, semiquantitative clinician-rating scales, and other observational evidence, which are often non-specific, resulting in open multiple interpretations and ambiguity in diagnosis and treatment plans. We present a method to analyze patient symptom profiles using multimodal analysis of subjects performing the Stroop Test. We use high-sample-rate eye tracking and speech recording tools to record subject behavior while completing the Stroop Test and simultaneously analyze multiple traits of their interaction with the test. We compare the performance of healthy controls to patients with Parkinson’s Disease, Alzheimer’s Disease, and other neurodegenerative diseases with clinical parkinsonism. We automatically extract metrics based on eye motor behavior, gaze characteristic uttered responses, and the temporal relationship between gaze and uttered responses. We identify many that have clinical relevance through high correlations with existing MoCA and MDS-UPDRS, many of which have significantly different distributions between groups. We present here our analysis approach, provide freely available source code to replicate it and demonstrate the potential of multi-modal recording and analysis of patients throughout their execution of neuro-psychological tests like the Stroop Test.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
阿坤发布了新的文献求助10
刚刚
丘山先生发布了新的文献求助10
1秒前
xiaotian完成签到,获得积分10
1秒前
huihongzeng完成签到,获得积分10
2秒前
loen完成签到,获得积分10
2秒前
一帆风顺发布了新的文献求助10
2秒前
3秒前
ark861023发布了新的文献求助10
3秒前
4秒前
语上完成签到,获得积分10
4秒前
5秒前
xc发布了新的文献求助10
5秒前
5秒前
Ogai完成签到,获得积分10
6秒前
zxy关闭了zxy文献求助
6秒前
科研通AI2S应助jidou1011采纳,获得10
6秒前
炙热灵发布了新的文献求助10
6秒前
7秒前
所所应助ark861023采纳,获得10
8秒前
慕青应助蛋妞儿采纳,获得10
9秒前
sylinmm完成签到,获得积分10
10秒前
10秒前
大个应助sdl采纳,获得10
11秒前
11秒前
123发布了新的文献求助10
11秒前
慕青应助Paper多多采纳,获得10
12秒前
思源应助一条纤维化的鱼采纳,获得20
13秒前
丘山先生完成签到,获得积分10
13秒前
kl完成签到,获得积分10
14秒前
小王发布了新的文献求助10
14秒前
15秒前
Tang发布了新的文献求助10
16秒前
16秒前
17秒前
科研修沟完成签到 ,获得积分10
18秒前
豆浆油条发布了新的文献求助10
19秒前
19秒前
大胆的翠绿完成签到,获得积分10
20秒前
20秒前
小马甲应助hhhh采纳,获得30
20秒前
高分求助中
Thinking Small and Large 500
Algorithmic Mathematics in Machine Learning 500
Handbook of Innovations in Political Psychology 400
Mapping the Stars: Celebrity, Metonymy, and the Networked Politics of Identity 400
Visceral obesity is associated with clinical and inflammatory features of asthma: A prospective cohort study 300
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
Engineering the boosting of the magnetic Purcell factor with a composite structure based on nanodisk and ring resonators 240
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3838587
求助须知:如何正确求助?哪些是违规求助? 3380942
关于积分的说明 10516287
捐赠科研通 3100475
什么是DOI,文献DOI怎么找? 1707527
邀请新用户注册赠送积分活动 821794
科研通“疑难数据库(出版商)”最低求助积分说明 772949