Development and Validation of a Deep-Learning Model to Predict Total Hip Replacement on Radiographs

接收机工作特性 医学 射线照相术 骨关节炎 体质指数 曲线下面积 关节置换术 外科 内科学 病理 替代医学
作者
Yi Xu,Hao Xiong,Weixuan Liu,Hang Liu,Jingyi Guo,Wei Wang,Hongjiang Ruan,Ziyang Sun,Cunyi Fan
出处
期刊:Journal of Bone and Joint Surgery, American Volume [Wolters Kluwer]
卷期号:106 (5): 389-396 被引量:2
标识
DOI:10.2106/jbjs.23.00549
摘要

Background: There are few methods for accurately assessing the risk of total hip arthroplasty (THA) in patients with osteoarthritis. A novel and reliable method that could play a substantial role in research and clinical routine should be investigated. The purpose of the present study was to develop a deep-learning model that can reliably predict the risk of THA with use of radiographic images and clinical symptom data. Methods: This retrospective, multicenter, case-control study assessed hip joints on weighted-bearing anteroposterior pelvic radiographs obtained from Osteoarthritis Initiative (OAI) participants. Participants who underwent THA were matched to controls according to age, sex, body mass index, and ethnicity. Cases and controls were uniformly split into training, validation, and testing data sets at proportions of 72% (n = 528), 14% (n = 104), and 14% (n = 104), respectively. Images and clinical symptom data were passed through a detection model and a deep convolutional neural network (DCNN) model to predict the probability of THA within 9 years as well as the most likely time period for THA (0 to 2 years, 3 to 5 years, 6 to 9 years). Model performance was assessed with use of the area under the receiver operating characteristic curve (AUC), accuracy, sensitivity, and specificity in the testing set. Results: A total of 736 participants were evaluated, including 184 cases and 552 controls. The prediction model achieved an overall accuracy, sensitivity, and specificity of 91.35%, 92.59% and 86.96%, respectively, with an AUC of 0.944, for THA within 9 years. The AUC of the DCNN model for assessing the most likely time period was 0.907 for 0 to 2 years, 0.916 for 3 to 5 years, and 0.841 for 6 to 9 years. Gradient-weighted class activation mapping closely corresponded to regions affecting the prediction of the DCNN model. Conclusions: The proposed DCNN model is a reliable and valid method to predict the probability of THA—within limitations. It could assist clinicians in patient counseling and decision-making regarding the timing of the intervention. In the future, by increasing the size of the data set, enhancing the ethnic and socioeconomic diversity of the participants, and improving the follow-up rate, the quality of the conclusions can be further improved. Level of Evidence: Prognostic Level III . See Instructions for Authors for a complete description of levels of evidence.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Allen发布了新的文献求助10
1秒前
Akim应助NCU-Xzzzz采纳,获得10
1秒前
1234完成签到,获得积分10
1秒前
SciGPT应助炒饭采纳,获得10
1秒前
故渊完成签到,获得积分10
1秒前
1秒前
1秒前
情怀应助郭红燕采纳,获得10
1秒前
yuanzhi完成签到,获得积分10
3秒前
3秒前
liang19640908完成签到 ,获得积分10
3秒前
4秒前
5秒前
waynechang完成签到,获得积分10
5秒前
Akim应助小高同学采纳,获得10
5秒前
幸福的白柏完成签到,获得积分10
5秒前
HJJHJH完成签到,获得积分10
5秒前
zhangdamiao发布了新的文献求助10
5秒前
言非离完成签到,获得积分10
5秒前
老实皮皮虾完成签到,获得积分10
5秒前
叶雯静完成签到,获得积分20
6秒前
6秒前
清漪完成签到,获得积分10
6秒前
zjzxs发布了新的文献求助10
6秒前
中宝完成签到,获得积分10
6秒前
NCU-Xzzzz完成签到,获得积分10
6秒前
李天萌应助耳甲通采纳,获得10
7秒前
可爱小天才完成签到 ,获得积分10
7秒前
MOS完成签到,获得积分10
8秒前
吾月发布了新的文献求助10
8秒前
美丽木木鱼完成签到,获得积分10
9秒前
HJJHJH发布了新的文献求助10
9秒前
NCU-Xzzzz发布了新的文献求助10
10秒前
帝国超级硕士完成签到,获得积分10
10秒前
llzuo完成签到,获得积分10
10秒前
xzy998应助可喜采纳,获得10
10秒前
Junewill完成签到,获得积分10
10秒前
倒霉的芒果完成签到 ,获得积分10
10秒前
宋芝恬完成签到,获得积分10
11秒前
11秒前
高分求助中
【请各位用户详细阅读此贴后再求助】科研通的精品贴汇总(请勿应助) 10000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
International Code of Nomenclature for algae, fungi, and plants (Madrid Code) (Regnum Vegetabile) 500
Maritime Applications of Prolonged Casualty Care: Drowning and Hypothermia on an Amphibious Warship 500
Comparison analysis of Apple face ID in iPad Pro 13” with first use of metasurfaces for diffraction vs. iPhone 16 Pro 500
Towards a $2B optical metasurfaces opportunity by 2029: a cornerstone for augmented reality, an incremental innovation for imaging (YINTR24441) 500
Materials for Green Hydrogen Production 2026-2036: Technologies, Players, Forecasts 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4061661
求助须知:如何正确求助?哪些是违规求助? 3600275
关于积分的说明 11433299
捐赠科研通 3323815
什么是DOI,文献DOI怎么找? 1827483
邀请新用户注册赠送积分活动 897954
科研通“疑难数据库(出版商)”最低求助积分说明 818774