Development and Validation of a Deep-Learning Model to Predict Total Hip Replacement on Radiographs

接收机工作特性 医学 射线照相术 骨关节炎 体质指数 曲线下面积 关节置换术 外科 内科学 病理 替代医学
作者
Yi Xu,Hao Xiong,Weixuan Liu,Hang Liu,Jingyi Guo,Wei Wang,Hongjiang Ruan,Ziyang Sun,Cunyi Fan
出处
期刊:Journal of Bone and Joint Surgery, American Volume [Journal of Bone and Joint Surgery]
卷期号:106 (5): 389-396 被引量:2
标识
DOI:10.2106/jbjs.23.00549
摘要

Background: There are few methods for accurately assessing the risk of total hip arthroplasty (THA) in patients with osteoarthritis. A novel and reliable method that could play a substantial role in research and clinical routine should be investigated. The purpose of the present study was to develop a deep-learning model that can reliably predict the risk of THA with use of radiographic images and clinical symptom data. Methods: This retrospective, multicenter, case-control study assessed hip joints on weighted-bearing anteroposterior pelvic radiographs obtained from Osteoarthritis Initiative (OAI) participants. Participants who underwent THA were matched to controls according to age, sex, body mass index, and ethnicity. Cases and controls were uniformly split into training, validation, and testing data sets at proportions of 72% (n = 528), 14% (n = 104), and 14% (n = 104), respectively. Images and clinical symptom data were passed through a detection model and a deep convolutional neural network (DCNN) model to predict the probability of THA within 9 years as well as the most likely time period for THA (0 to 2 years, 3 to 5 years, 6 to 9 years). Model performance was assessed with use of the area under the receiver operating characteristic curve (AUC), accuracy, sensitivity, and specificity in the testing set. Results: A total of 736 participants were evaluated, including 184 cases and 552 controls. The prediction model achieved an overall accuracy, sensitivity, and specificity of 91.35%, 92.59% and 86.96%, respectively, with an AUC of 0.944, for THA within 9 years. The AUC of the DCNN model for assessing the most likely time period was 0.907 for 0 to 2 years, 0.916 for 3 to 5 years, and 0.841 for 6 to 9 years. Gradient-weighted class activation mapping closely corresponded to regions affecting the prediction of the DCNN model. Conclusions: The proposed DCNN model is a reliable and valid method to predict the probability of THA—within limitations. It could assist clinicians in patient counseling and decision-making regarding the timing of the intervention. In the future, by increasing the size of the data set, enhancing the ethnic and socioeconomic diversity of the participants, and improving the follow-up rate, the quality of the conclusions can be further improved. Level of Evidence: Prognostic Level III . See Instructions for Authors for a complete description of levels of evidence.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Jerry20184发布了新的文献求助10
2秒前
小二郎应助从容哈密瓜采纳,获得10
3秒前
4秒前
5秒前
脑洞疼应助车厘子采纳,获得10
5秒前
6秒前
7秒前
淡淡瓜子完成签到 ,获得积分10
7秒前
Halsey完成签到,获得积分20
7秒前
9秒前
Lucas应助johnzsin采纳,获得10
9秒前
9秒前
许鑫蓁完成签到 ,获得积分10
10秒前
10秒前
JW发布了新的文献求助10
11秒前
12秒前
犬狗狗发布了新的文献求助20
12秒前
传奇3应助苏博杰采纳,获得10
13秒前
芍药药完成签到,获得积分20
13秒前
科研欢发布了新的文献求助10
13秒前
15秒前
15秒前
Pursue完成签到,获得积分10
16秒前
16秒前
17秒前
小凯发布了新的文献求助10
17秒前
田様应助L~采纳,获得10
17秒前
18秒前
18秒前
创创发布了新的文献求助10
19秒前
20秒前
20秒前
完美世界应助啊哈哈采纳,获得10
21秒前
王xingxing完成签到 ,获得积分10
21秒前
阿花发布了新的文献求助10
21秒前
Gahon完成签到,获得积分10
21秒前
johnzsin发布了新的文献求助10
22秒前
J.完成签到 ,获得积分10
23秒前
Mei完成签到,获得积分10
23秒前
量子星尘发布了新的文献求助10
23秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to Early Childhood Education 1000
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 921
Identifying dimensions of interest to support learning in disengaged students: the MINE project 800
Synthesis and properties of compounds of the type A (III) B2 (VI) X4 (VI), A (III) B4 (V) X7 (VI), and A3 (III) B4 (V) X9 (VI) 500
Antihistamine substances. XXII; Synthetic antispasmodics. IV. Basic ethers derived from aliphatic carbinols and α-substituted benzyl alcohols 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5430695
求助须知:如何正确求助?哪些是违规求助? 4543745
关于积分的说明 14189043
捐赠科研通 4462220
什么是DOI,文献DOI怎么找? 2446443
邀请新用户注册赠送积分活动 1437819
关于科研通互助平台的介绍 1414530