Development and Validation of a Deep-Learning Model to Predict Total Hip Replacement on Radiographs

接收机工作特性 医学 射线照相术 骨关节炎 体质指数 曲线下面积 关节置换术 外科 内科学 病理 替代医学
作者
Yi Xu,Hao Xiong,Weixuan Liu,Hang Liu,Jingyi Guo,Wei Wang,Hongjiang Ruan,Ziyang Sun,Cunyi Fan
出处
期刊:Journal of Bone and Joint Surgery, American Volume [Wolters Kluwer]
卷期号:106 (5): 389-396 被引量:2
标识
DOI:10.2106/jbjs.23.00549
摘要

Background: There are few methods for accurately assessing the risk of total hip arthroplasty (THA) in patients with osteoarthritis. A novel and reliable method that could play a substantial role in research and clinical routine should be investigated. The purpose of the present study was to develop a deep-learning model that can reliably predict the risk of THA with use of radiographic images and clinical symptom data. Methods: This retrospective, multicenter, case-control study assessed hip joints on weighted-bearing anteroposterior pelvic radiographs obtained from Osteoarthritis Initiative (OAI) participants. Participants who underwent THA were matched to controls according to age, sex, body mass index, and ethnicity. Cases and controls were uniformly split into training, validation, and testing data sets at proportions of 72% (n = 528), 14% (n = 104), and 14% (n = 104), respectively. Images and clinical symptom data were passed through a detection model and a deep convolutional neural network (DCNN) model to predict the probability of THA within 9 years as well as the most likely time period for THA (0 to 2 years, 3 to 5 years, 6 to 9 years). Model performance was assessed with use of the area under the receiver operating characteristic curve (AUC), accuracy, sensitivity, and specificity in the testing set. Results: A total of 736 participants were evaluated, including 184 cases and 552 controls. The prediction model achieved an overall accuracy, sensitivity, and specificity of 91.35%, 92.59% and 86.96%, respectively, with an AUC of 0.944, for THA within 9 years. The AUC of the DCNN model for assessing the most likely time period was 0.907 for 0 to 2 years, 0.916 for 3 to 5 years, and 0.841 for 6 to 9 years. Gradient-weighted class activation mapping closely corresponded to regions affecting the prediction of the DCNN model. Conclusions: The proposed DCNN model is a reliable and valid method to predict the probability of THA—within limitations. It could assist clinicians in patient counseling and decision-making regarding the timing of the intervention. In the future, by increasing the size of the data set, enhancing the ethnic and socioeconomic diversity of the participants, and improving the follow-up rate, the quality of the conclusions can be further improved. Level of Evidence: Prognostic Level III . See Instructions for Authors for a complete description of levels of evidence.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
hello发布了新的文献求助10
刚刚
在水一方应助2019kyxb采纳,获得30
3秒前
4秒前
禁忌发布了新的文献求助30
6秒前
李健应助nnnd77采纳,获得10
6秒前
9秒前
10秒前
12秒前
aldehyde应助风清扬采纳,获得100
12秒前
14秒前
14秒前
包子发布了新的文献求助10
14秒前
斯文败类应助负责的方盒采纳,获得10
15秒前
15秒前
16秒前
花佚狐完成签到,获得积分10
18秒前
llwwtt发布了新的文献求助10
19秒前
yout发布了新的文献求助30
20秒前
gq完成签到,获得积分10
21秒前
科研通AI5应助luoguixun采纳,获得10
23秒前
顾矜应助newsox采纳,获得10
23秒前
25秒前
小雨二月完成签到 ,获得积分10
31秒前
斯文败类应助岁安安安采纳,获得10
32秒前
aldehyde应助风清扬采纳,获得100
33秒前
llwwtt完成签到,获得积分10
37秒前
小曾科研顺利完成签到 ,获得积分10
38秒前
kimini完成签到,获得积分10
40秒前
桐桐应助赤雪采纳,获得10
41秒前
42秒前
包子完成签到,获得积分10
44秒前
清脆慕山完成签到,获得积分10
47秒前
48秒前
49秒前
50秒前
51秒前
52秒前
52秒前
52秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Biodiversity Third Edition 2023 2000
求中国石油大学(北京)图书馆的硕士论文,作者董晨,十年前搞太赫兹的 500
Vertebrate Palaeontology, 5th Edition 500
Narrative Method and Narrative form in Masaccio's Tribute Money 500
Aircraft Engine Design, Third Edition 500
Neonatal and Pediatric ECMO Simulation Scenarios 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4762057
求助须知:如何正确求助?哪些是违规求助? 4101764
关于积分的说明 12692293
捐赠科研通 3817765
什么是DOI,文献DOI怎么找? 2107335
邀请新用户注册赠送积分活动 1131993
关于科研通互助平台的介绍 1011057