Prediction of NbTaTiZr-based high-entropy alloys with high strength or ductility: First-principles calculations

高熵合金 材料科学 延展性(地球科学) 熵(时间箭头) 统计物理学 冶金 热力学 合金 物理 蠕动
作者
Yanan Wu,Yun Zhang,Ze Li,Zhiyu Liu,Erjun Zhao,Jingshun Liu
出处
期刊:Journal of materials research and technology [Elsevier]
卷期号:30: 8854-8861 被引量:33
标识
DOI:10.1016/j.jmrt.2024.05.253
摘要

Refractory high-entropy alloys (RHEAs) have a great potential in high-temperature electronics, extensive aerospace and biomedical applications due to their unique strength and ductility. Herein, the effects of alloying elements on the mechanical and electronic properties of NbTaTiZrX (X = V, Mo, Hf, W and Re) RHEAs are investigated by using the density functional theory (DFT) in combination with the special quasi-random structure (SQS) and virtual crystal approximation (VCA) methods. The calculated results show that alloying of Mo, W and Re with high elastic modulus can enhance the strength and the hardness of RHEAs. Among them, NbTaTiZrRe RHEA with the best strengthening effect has a yield strength of exceeds 2 GPa, which is notably higher than other considered high-entropy alloys. For alloying of V and Hf, the ductility of RHEAs is improved, and among which, NbTaTiZrHf RHEA has a relatively best ductility. Compared with other NbTaTiZrX RHEAs, spiral dislocations in NbTaTiZrHf RHEA are more prone to nucleate, and which confirms its excellent ductility. Moreover, the reduction of pseudo energy gaps and the formation of Hf–Hf strong metallic bonds further confirm its metallic ductility from the electronic density of states and charge density. The theoretical predictions in this study are congruent with the existing experimental data, and have certain theoretical guidance relevance for enhancing the mechanical characteristics of NbTaTiZrX (X = V, Mo, Hf, W and Re) RHEAs.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
青柠完成签到,获得积分20
1秒前
张晓慧完成签到,获得积分10
2秒前
2秒前
cfyoung完成签到,获得积分10
3秒前
Zhu XY.完成签到,获得积分10
3秒前
4秒前
4秒前
猪猪空发布了新的文献求助30
4秒前
阿梦完成签到,获得积分10
4秒前
红油曲奇完成签到,获得积分10
5秒前
zdxs发布了新的文献求助10
5秒前
5秒前
曾丹么么哒完成签到,获得积分10
5秒前
派大力发布了新的文献求助10
5秒前
6秒前
6秒前
Anrannn完成签到,获得积分10
7秒前
毕奥萨伐尔完成签到,获得积分10
8秒前
雪莉酒完成签到,获得积分10
8秒前
吱吱吱吱发布了新的文献求助10
9秒前
科研通AI6应助时尚的咖啡采纳,获得10
9秒前
顾风华发布了新的文献求助10
9秒前
俭朴听双完成签到,获得积分10
9秒前
岁峰柒完成签到,获得积分10
9秒前
小满应助Sucre采纳,获得10
10秒前
nextconnie发布了新的文献求助10
10秒前
随便发布了新的文献求助10
10秒前
LU完成签到,获得积分10
11秒前
三岁应助科研通管家采纳,获得10
11秒前
英俊的铭应助科研通管家采纳,获得30
11秒前
英俊的铭应助科研通管家采纳,获得10
11秒前
CodeCraft应助科研通管家采纳,获得10
11秒前
桐桐应助科研通管家采纳,获得10
11秒前
李爱国应助科研通管家采纳,获得10
11秒前
FashionBoy应助科研通管家采纳,获得10
11秒前
汉堡包应助科研通管家采纳,获得20
11秒前
三岁应助科研通管家采纳,获得10
11秒前
桐桐应助科研通管家采纳,获得10
11秒前
Wind应助科研通管家采纳,获得10
12秒前
wml应助科研通管家采纳,获得10
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
Exosomes Pipeline Insight, 2025 500
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5648015
求助须知:如何正确求助?哪些是违规求助? 4774710
关于积分的说明 15042383
捐赠科研通 4807069
什么是DOI,文献DOI怎么找? 2570494
邀请新用户注册赠送积分活动 1527283
关于科研通互助平台的介绍 1486389