Lithology identification from well-log curves via neural networks with additional geologic constraint

约束(计算机辅助设计) 岩性 卷积神经网络 计算机科学 序列(生物学) 测井 集合(抽象数据类型) 鉴定(生物学) 人工神经网络 循环神经网络 特征(语言学) 地质学 数据挖掘 人工智能 模式识别(心理学) 岩石学 地球物理学 数学 哲学 程序设计语言 遗传学 语言学 几何学 生物 植物
作者
Chunbi Jiang,Dongxiao Zhang,Shifeng Chen
出处
期刊:Geophysics [Society of Exploration Geophysicists]
卷期号:86 (5): IM85-IM100 被引量:55
标识
DOI:10.1190/geo2020-0676.1
摘要

Lithology identification is of great importance in reservoir characterization. Recently, many researchers have applied machine-learning techniques to solve lithology identification problems from well-log curves, and their works indicate three main characteristics. First, most works predict lithofacies using features measured during logging, whereas very few consider adding stratigraphic sequence information that is available prior to drilling to solve this problem. Second, most studies predict lithofacies using measured properties of one depth point, whereas few take the influence of the neighboring formation into account. Third, due to a lack of publicly available interpreted well-log data, previous research has concentrated on applying different algorithms on their private data set, making it impossible to perform a comparison. We have developed a machine-learning framework to solve the lithology classification problem from well-log curves by incorporating an additional geologic constraint. The constraint is a stratigraphic unit, and we use it as an additional feature. We evaluate three types of recurrent neural networks (RNNs), bidirectional long short-term memory, bidirectional gated recurrent unit (Bi-GRU), and GRU-based encoder-decoder architecture with attention, as well as two types of 1D convolutional neural networks (1D CNNs), temporal convolutional network and multiscale residual network, on a publicly available data set from the North Sea. The RNN-based networks and 1D CNN-based networks can process sequential data, enabling the model to have access to information from neighboring formations when performing lithofacies prediction at a particular depth. Our experiments indicate that geologic constraint improves the performance of the models significantly, and that the overall performance of RNN-based networks is better and more consistent.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
222完成签到,获得积分10
2秒前
阔达樱桃完成签到,获得积分10
3秒前
liudw完成签到,获得积分10
6秒前
善学以致用应助JJ采纳,获得10
6秒前
DZQ完成签到,获得积分10
10秒前
nuistd完成签到,获得积分10
14秒前
Lu_ckilly完成签到 ,获得积分10
16秒前
缓慢手机完成签到,获得积分10
17秒前
小瓶盖完成签到 ,获得积分10
19秒前
fantianhui完成签到 ,获得积分10
19秒前
科目三应助away采纳,获得10
26秒前
29秒前
srx完成签到,获得积分10
34秒前
廖天佑完成签到,获得积分0
35秒前
35秒前
法外潮湿宝贝完成签到 ,获得积分10
39秒前
汉堡包应助xuexin采纳,获得10
40秒前
调皮的蓝天完成签到 ,获得积分10
41秒前
BJ_whc完成签到,获得积分10
42秒前
格兰德法泽尔完成签到,获得积分10
45秒前
45秒前
迢迢万里完成签到 ,获得积分10
50秒前
min发布了新的文献求助10
51秒前
无辜的夏兰完成签到,获得积分10
51秒前
xinxiangshicheng完成签到 ,获得积分10
52秒前
不吃芹菜完成签到,获得积分10
55秒前
marvelou完成签到,获得积分10
55秒前
学分完成签到 ,获得积分10
56秒前
ymxlcfc完成签到 ,获得积分10
56秒前
YANA完成签到,获得积分10
57秒前
zhangxinan完成签到,获得积分10
57秒前
学术完成签到 ,获得积分10
57秒前
米里迷路完成签到 ,获得积分10
59秒前
1分钟前
霜二完成签到 ,获得积分10
1分钟前
1分钟前
JJ发布了新的文献求助10
1分钟前
mao完成签到,获得积分10
1分钟前
虚心的仙人掌完成签到,获得积分10
1分钟前
css完成签到,获得积分10
1分钟前
高分求助中
Mass producing individuality 600
Разработка метода ускоренного контроля качества электрохромных устройств 500
A Combined Chronic Toxicity and Carcinogenicity Study of ε-Polylysine in the Rat 400
Advances in Underwater Acoustics, Structural Acoustics, and Computational Methodologies 300
Effect of deresuscitation management vs. usual care on ventilator-free days in patients with abdominal septic shock 200
Erectile dysfunction From bench to bedside 200
Advanced Introduction to Behavioral Law and Economics 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3825090
求助须知:如何正确求助?哪些是违规求助? 3367398
关于积分的说明 10445528
捐赠科研通 3086781
什么是DOI,文献DOI怎么找? 1698286
邀请新用户注册赠送积分活动 816682
科研通“疑难数据库(出版商)”最低求助积分说明 769911