Lithology identification from well-log curves via neural networks with additional geologic constraint

约束(计算机辅助设计) 岩性 卷积神经网络 计算机科学 序列(生物学) 测井 集合(抽象数据类型) 鉴定(生物学) 人工神经网络 循环神经网络 特征(语言学) 地质学 数据挖掘 人工智能 模式识别(心理学) 岩石学 地球物理学 数学 哲学 程序设计语言 遗传学 语言学 几何学 生物 植物
作者
Chunbi Jiang,Dongxiao Zhang,Shifeng Chen
出处
期刊:Geophysics [Society of Exploration Geophysicists]
卷期号:86 (5): IM85-IM100 被引量:55
标识
DOI:10.1190/geo2020-0676.1
摘要

Lithology identification is of great importance in reservoir characterization. Recently, many researchers have applied machine-learning techniques to solve lithology identification problems from well-log curves, and their works indicate three main characteristics. First, most works predict lithofacies using features measured during logging, whereas very few consider adding stratigraphic sequence information that is available prior to drilling to solve this problem. Second, most studies predict lithofacies using measured properties of one depth point, whereas few take the influence of the neighboring formation into account. Third, due to a lack of publicly available interpreted well-log data, previous research has concentrated on applying different algorithms on their private data set, making it impossible to perform a comparison. We have developed a machine-learning framework to solve the lithology classification problem from well-log curves by incorporating an additional geologic constraint. The constraint is a stratigraphic unit, and we use it as an additional feature. We evaluate three types of recurrent neural networks (RNNs), bidirectional long short-term memory, bidirectional gated recurrent unit (Bi-GRU), and GRU-based encoder-decoder architecture with attention, as well as two types of 1D convolutional neural networks (1D CNNs), temporal convolutional network and multiscale residual network, on a publicly available data set from the North Sea. The RNN-based networks and 1D CNN-based networks can process sequential data, enabling the model to have access to information from neighboring formations when performing lithofacies prediction at a particular depth. Our experiments indicate that geologic constraint improves the performance of the models significantly, and that the overall performance of RNN-based networks is better and more consistent.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
bian完成签到,获得积分10
刚刚
FLD发布了新的文献求助10
刚刚
芒果发布了新的文献求助10
刚刚
时间尘埃完成签到,获得积分10
刚刚
优美芝完成签到,获得积分10
刚刚
勤劳弘文完成签到,获得积分10
刚刚
xin发布了新的文献求助10
1秒前
MacD发布了新的文献求助10
1秒前
芒果发布了新的文献求助10
1秒前
朴素鹏煊完成签到,获得积分10
1秒前
hyf发布了新的文献求助10
2秒前
Haster8182发布了新的文献求助10
3秒前
3秒前
4秒前
Jiayou Zhang发布了新的文献求助10
4秒前
shadow发布了新的文献求助10
4秒前
小二郎应助沉默烨霖采纳,获得10
4秒前
吴梓豪完成签到,获得积分10
7秒前
7秒前
7秒前
量子星尘发布了新的文献求助10
8秒前
8秒前
长情半邪完成签到 ,获得积分10
8秒前
8秒前
9秒前
阮绿凝完成签到,获得积分10
9秒前
将将给将将的求助进行了留言
9秒前
9秒前
10秒前
茂茂发布了新的文献求助10
11秒前
11秒前
11秒前
ph发布了新的文献求助10
11秒前
12秒前
李爱国应助Zl采纳,获得10
12秒前
木糖醇应助伽古拉40k采纳,获得10
12秒前
诺诺发布了新的文献求助10
13秒前
13秒前
伊梦阑珊完成签到,获得积分10
14秒前
YBR发布了新的文献求助10
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
扫描探针电化学 1000
Teaching Language in Context (Third Edition) 1000
Identifying dimensions of interest to support learning in disengaged students: the MINE project 1000
Introduction to Early Childhood Education 1000
List of 1,091 Public Pension Profiles by Region 921
Aerospace Standards Index - 2025 800
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5436885
求助须知:如何正确求助?哪些是违规求助? 4548752
关于积分的说明 14216335
捐赠科研通 4469149
什么是DOI,文献DOI怎么找? 2449356
邀请新用户注册赠送积分活动 1440294
关于科研通互助平台的介绍 1416755