材料科学
抗弯强度
复合材料
微观结构
弯曲模量
陶瓷基复合材料
陶瓷
复合数
变形(气象学)
模数
弹性模量
数字图像相关
作者
Zhengmao Yang,Keji Pang,Xianqi Lei,Qing Hu
出处
期刊:Journal of Engineering Materials and Technology-transactions of The Asme
[American Society of Mechanical Engineers]
日期:2022-12-06
卷期号:145 (3)
被引量:1
摘要
Abstract In the present work, the microstructure deformation and synergetic damage evolution of a three-dimensional textile SiC/SiC ceramic-matrix composite under flexural loading are investigated by in situ digital image correlation at ambient temperatures. The correlations between microstructure evolution and macro-mechanical degradation of 3D textile composites under flexural loading are established based on the experimental results. In addition, by establishing continuum damage mechanics and a thermodynamic framework with synergetic effects of microstructures, a flexural loading-induced damage evolution model is developed to reveal the relationship between the energy release rate and elastic modulus degradation. The proposed model can be used to predict the flexural stress–strain curves of 3D textile SiC/SiC composites to further improve the design and assessment of new textile architectures with specific mechanical properties.
科研通智能强力驱动
Strongly Powered by AbleSci AI