亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Patient Characteristics Impact Performance of AI Algorithm in Interpreting Negative Screening Digital Breast Tomosynthesis Studies

医学 技术 层析合成 算法 乳腺摄影术 人工智能 医学物理学 内科学 乳腺癌 计算机科学 癌症
作者
Derek L. Nguyen,Yinhao Ren,T.L. Jones,Samantha M. Thomas,Joseph Y. Lo,Lars J. Grimm,Eileen Gamagami
出处
期刊:Radiology [Radiological Society of North America]
卷期号:311 (2)
标识
DOI:10.1148/radiol.232286
摘要

Background Artificial intelligence (AI) is increasingly used to manage radiologists' workloads. The impact of patient characteristics on AI performance has not been well studied. Purpose To understand the impact of patient characteristics (race and ethnicity, age, and breast density) on the performance of an AI algorithm interpreting negative screening digital breast tomosynthesis (DBT) examinations. Materials and Methods This retrospective cohort study identified negative screening DBT examinations from an academic institution from January 1, 2016, to December 31, 2019. All examinations had 2 years of follow-up without a diagnosis of atypia or breast malignancy and were therefore considered true negatives. A subset of unique patients was randomly selected to provide a broad distribution of race and ethnicity. DBT studies in this final cohort were interpreted by a U.S. Food and Drug Administration–approved AI algorithm, which generated case scores (malignancy certainty) and risk scores (1-year subsequent malignancy risk) for each mammogram. Positive examinations were classified based on vendor-provided thresholds for both scores. Multivariable logistic regression was used to understand relationships between the scores and patient characteristics. Results A total of 4855 patients (median age, 54 years [IQR, 46–63 years]) were included: 27% (1316 of 4855) White, 26% (1261 of 4855) Black, 28% (1351 of 4855) Asian, and 19% (927 of 4855) Hispanic patients. False-positive case scores were significantly more likely in Black patients (odds ratio [OR] = 1.5 [95% CI: 1.2, 1.8]) and less likely in Asian patients (OR = 0.7 [95% CI: 0.5, 0.9]) compared with White patients, and more likely in older patients (71–80 years; OR = 1.9 [95% CI: 1.5, 2.5]) and less likely in younger patients (41–50 years; OR = 0.6 [95% CI: 0.5, 0.7]) compared with patients aged 51–60 years. False-positive risk scores were more likely in Black patients (OR = 1.5 [95% CI: 1.0, 2.0]), patients aged 61–70 years (OR = 3.5 [95% CI: 2.4, 5.1]), and patients with extremely dense breasts (OR = 2.8 [95% CI: 1.3, 5.8]) compared with White patients, patients aged 51–60 years, and patients with fatty density breasts, respectively. Conclusion Patient characteristics influenced the case and risk scores of a Food and Drug Administration–approved AI algorithm analyzing negative screening DBT examinations. © RSNA, 2024
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
小羊完成签到 ,获得积分10
1秒前
8秒前
积极向上的阿闯完成签到,获得积分20
13秒前
13秒前
大芋头发布了新的文献求助10
22秒前
24秒前
25秒前
30秒前
48秒前
1分钟前
zxq1996完成签到 ,获得积分10
1分钟前
1分钟前
幽默的醉冬完成签到 ,获得积分10
2分钟前
2分钟前
2分钟前
2分钟前
酷波er应助ents采纳,获得10
2分钟前
El发布了新的文献求助10
2分钟前
华仔应助El采纳,获得10
2分钟前
2分钟前
ents发布了新的文献求助10
2分钟前
深情飞丹完成签到 ,获得积分10
2分钟前
2分钟前
3分钟前
alex_zhao完成签到,获得积分10
3分钟前
阿巴发布了新的文献求助10
3分钟前
薅住科研的头发完成签到,获得积分10
3分钟前
NexusExplorer应助科研通管家采纳,获得10
3分钟前
4分钟前
科目三应助阿巴采纳,获得10
4分钟前
jjjj完成签到,获得积分10
4分钟前
4分钟前
4分钟前
4分钟前
LIUDEHUA发布了新的文献求助10
4分钟前
千里草完成签到,获得积分10
5分钟前
5分钟前
汉字发布了新的文献求助10
5分钟前
yindi1991完成签到 ,获得积分10
5分钟前
高分求助中
(禁止应助)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Semantics for Latin: An Introduction 1099
Biology of the Indian Stingless Bee: Tetragonula iridipennis Smith 1000
Robot-supported joining of reinforcement textiles with one-sided sewing heads 680
Thermal Quadrupoles: Solving the Heat Equation through Integral Transforms 500
SPSS for Windows Step by Step: A Simple Study Guide and Reference, 17.0 Update (10th Edition) 500
PBSM: Predictive Bi-Preference Stable Matching in Spatial Crowdsourcing 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4124410
求助须知:如何正确求助?哪些是违规求助? 3662303
关于积分的说明 11590322
捐赠科研通 3362598
什么是DOI,文献DOI怎么找? 1847662
邀请新用户注册赠送积分活动 912036
科研通“疑难数据库(出版商)”最低求助积分说明 827849