Dataset Distillation: A Comprehensive Review

计算机科学 人工智能 机器学习 原始数据 深度学习 训练集 过程(计算) 人工神经网络 任务(项目管理) 深层神经网络 蒸馏 数据科学 数据挖掘 管理 经济 程序设计语言 操作系统 化学 有机化学
作者
Ruonan Yu,Songhua Liu,Xinchao Wang
出处
期刊:IEEE Transactions on Pattern Analysis and Machine Intelligence [IEEE Computer Society]
卷期号:46 (1): 150-170 被引量:55
标识
DOI:10.1109/tpami.2023.3323376
摘要

Recent success of deep learning is largely attributed to the sheer amount of data used for training deep neural networks. Despite the unprecedented success, the massive data, unfortunately, significantly increases the burden on storage and transmission and further gives rise to a cumbersome model training process. Besides, relying on the raw data for training per se yields concerns about privacy and copyright. To alleviate these shortcomings, dataset distillation (DD), also known as dataset condensation (DC), was introduced and has recently attracted much research attention in the community. Given an original dataset, DD aims to derive a much smaller dataset containing synthetic samples, based on which the trained models yield performance comparable with those trained on the original dataset. In this paper, we give a comprehensive review and summary of recent advances in DD and its application. We first introduce the task formally and propose an overall algorithmic framework followed by all existing DD methods. Next, we provide a systematic taxonomy of current methodologies in this area, and discuss their theoretical interconnections. We also present current challenges in DD through extensive empirical studies and envision possible directions for future works.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
小房子完成签到,获得积分10
1秒前
寂寞的羽毛完成签到,获得积分10
1秒前
1秒前
细心可乐完成签到 ,获得积分10
1秒前
2秒前
2秒前
cdercder应助柔弱蹇采纳,获得10
2秒前
水电费完成签到 ,获得积分10
2秒前
3秒前
3秒前
3秒前
SciGPT应助完美芹采纳,获得10
4秒前
小小化学人完成签到,获得积分20
4秒前
4秒前
布莱克完成签到 ,获得积分10
5秒前
天涯是我发布了新的文献求助10
5秒前
小熊猫发布了新的文献求助20
5秒前
sylvia发布了新的文献求助10
5秒前
5秒前
斯文败类应助斯可采纳,获得10
5秒前
tyy发布了新的文献求助10
6秒前
6秒前
7秒前
7秒前
7秒前
七妈完成签到,获得积分10
8秒前
8秒前
8秒前
9秒前
9秒前
qiuqiu发布了新的文献求助10
9秒前
zhzhzh发布了新的文献求助10
10秒前
10秒前
yc发布了新的文献求助10
11秒前
11秒前
深情安青应助sdl采纳,获得10
11秒前
12秒前
12秒前
breeze完成签到,获得积分10
12秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Mobilization, center-periphery structures and nation-building 600
Technologies supporting mass customization of apparel: A pilot project 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
Multichannel rotary joints-How they work 400
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3796339
求助须知:如何正确求助?哪些是违规求助? 3341373
关于积分的说明 10306159
捐赠科研通 3057930
什么是DOI,文献DOI怎么找? 1677992
邀请新用户注册赠送积分活动 805746
科研通“疑难数据库(出版商)”最低求助积分说明 762775