PAS-GAN: A GAN based on the Pyramid Across-Scale module for visible-infrared image transformation

计算机科学 人工智能 特征(语言学) 转化(遗传学) 模式识别(心理学) 棱锥(几何) 计算机视觉 特征提取 红外线的 图像(数学) 光学 生物化学 化学 物理 基因 哲学 语言学
作者
Sirui Wang,Guiling Sun,Dong Liang,Bowen Zheng
出处
期刊:Infrared Physics & Technology [Elsevier BV]
卷期号:139: 105314-105314 被引量:2
标识
DOI:10.1016/j.infrared.2024.105314
摘要

With the rapid development of computer vision, there is a recent trend for intelligent image understanding based on deep learning. RGB images and infrared images have complementary information in image capture tasks in complex environments due to their different imaging modalities. Therefore, the combination of the two plays an important role in improving video surveillance and target detection capabilities. However, large publicly available infrared image datasets are lacking and acquiring infrared images can be resource-intensive. The lack of samples can lead to a breakdown in the training of deep models. In this paper, to overcome this challenge, we construct a GAN-based visible-infrared image transformation model. The model uses existing visible data to generate infrared images by training an end-to-end generative network. We innovatively propose a lightweight PAS feature extraction module applied to the generator. It enriches the image detail representation of the feature domain from multiple dimensions and greatly improves the model feature representation capability. And the image gradient calculation is used to limit the direction of model optimization. We evaluated our model on three different publicly available datasets, evaluating the quality of the generated images in terms of both visual effects and objective numerical assessments. The experimental results show that the network exhibits excellent results in both qualitative and quantitative evaluation compared to the current state-of-the-art image generation methods.The lightweight feature extraction module also gives PAS-GAN a significant advantage in inference speed.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
1秒前
科研通AI5应助庸人自扰采纳,获得10
1秒前
1秒前
1秒前
共享精神应助专一的万怨采纳,获得10
2秒前
2秒前
Owen应助UsxWyc采纳,获得10
3秒前
大象7199完成签到,获得积分10
3秒前
皮卡丘发布了新的文献求助10
3秒前
FK7发布了新的文献求助10
4秒前
4秒前
深情安青应助Clovis33采纳,获得10
4秒前
shiyu发布了新的文献求助10
4秒前
5秒前
舒心绝义发布了新的文献求助30
5秒前
6秒前
复杂瑛完成签到,获得积分10
7秒前
7秒前
干净莆应助妮儿采纳,获得10
7秒前
坚强白容发布了新的文献求助10
8秒前
8秒前
8秒前
9秒前
无花果应助shiyu采纳,获得10
10秒前
难过板栗给曲奇的求助进行了留言
10秒前
周小鱼发布了新的文献求助10
11秒前
许甜甜鸭应助胖飞飞采纳,获得10
11秒前
小猫发布了新的文献求助10
11秒前
搜集达人应助CoCo采纳,获得10
12秒前
Never stall发布了新的文献求助10
12秒前
852应助Denmark采纳,获得50
13秒前
13秒前
打打应助洪武采纳,获得10
13秒前
xiaoxiao发布了新的文献求助10
14秒前
Owen应助如梦采纳,获得10
15秒前
坚强白容完成签到,获得积分20
15秒前
15秒前
16秒前
高分求助中
Worked Bone, Antler, Ivory, and Keratinous Materials 1000
Mass producing individuality 600
Algorithmic Mathematics in Machine Learning 500
Разработка метода ускоренного контроля качества электрохромных устройств 500
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
Advances in Underwater Acoustics, Structural Acoustics, and Computational Methodologies 300
Single Element Semiconductors: Properties and Devices 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3828607
求助须知:如何正确求助?哪些是违规求助? 3371080
关于积分的说明 10466123
捐赠科研通 3090923
什么是DOI,文献DOI怎么找? 1700600
邀请新用户注册赠送积分活动 817945
科研通“疑难数据库(出版商)”最低求助积分说明 770618