A CNN-BiLSTM model with attention mechanism for earthquake prediction

计算机科学 地震预报 深度学习 人工智能 一般化 卷积神经网络 人工神经网络 混乱的 机器学习 地震学 数学分析 数学 地质学
作者
Parisa Kavianpour,Mohammadreza Kavianpour,Ehsan Jahani,Amin Ramezani
出处
期刊:The Journal of Supercomputing [Springer Science+Business Media]
卷期号:79 (17): 19194-19226 被引量:65
标识
DOI:10.1007/s11227-023-05369-y
摘要

Earthquakes, as natural phenomena, have consistently caused damage and loss of human life throughout history. Earthquake prediction is an essential aspect of any society's plans and can increase public preparedness and reduce damage to a great extent. Despite advances in computing systems and deep learning methods, no substantial achievements have been made in earthquake prediction. One of the most important reasons is that the earthquake's nonlinear and chaotic behavior makes it hard to train the deep learning method. To tackle this drawback, this study tries to take an effective step in improving the performance of prediction results by employing a novel method in earthquake prediction. This method employs a deep learning model based on convolutional neural networks (CNN), bi-directional long short-term memory (BiLSTM), and an attention mechanism, as well as a zero-order hold (ZOH) pre-processing methodology. This study aims to predict the maximum magnitude and number of earthquakes in the next month with the least error. The proposed method was evaluated by an earthquake dataset from nine distinct regions of China. The results reveal that the proposed method outperforms other prediction methods in terms of performance and generalization.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
感动的白梅完成签到,获得积分10
刚刚
范范完成签到,获得积分10
刚刚
1秒前
恬恬完成签到,获得积分10
1秒前
aaaa完成签到,获得积分10
2秒前
吱吱熊sama完成签到,获得积分10
2秒前
花花发布了新的文献求助10
2秒前
Rocsoar发布了新的文献求助10
2秒前
2秒前
黎小乐子完成签到,获得积分10
2秒前
bellapp完成签到 ,获得积分10
3秒前
叮当完成签到,获得积分10
3秒前
5秒前
miawei完成签到,获得积分10
5秒前
5秒前
大模型应助aaa采纳,获得10
5秒前
痞老板发布了新的文献求助10
6秒前
狂野的河马完成签到,获得积分10
6秒前
勤奋的松鼠完成签到,获得积分10
7秒前
王晓蕾发布了新的文献求助10
7秒前
猫好好完成签到,获得积分10
7秒前
bkagyin应助103921wjk采纳,获得10
8秒前
JJy完成签到 ,获得积分10
8秒前
mof发布了新的文献求助10
8秒前
陌落完成签到,获得积分20
8秒前
慕容松完成签到,获得积分10
8秒前
背后的鹭洋完成签到,获得积分10
8秒前
LI电池发布了新的文献求助10
9秒前
淡淡的发卡完成签到,获得积分10
9秒前
kobe发布了新的文献求助10
10秒前
10秒前
暗黑同学完成签到,获得积分10
11秒前
小凉完成签到,获得积分10
11秒前
11秒前
11秒前
火星上冬亦完成签到,获得积分10
11秒前
12秒前
12秒前
乐意李完成签到,获得积分10
12秒前
13秒前
高分求助中
Thinking Small and Large 500
Algorithmic Mathematics in Machine Learning 500
Handbook of Innovations in Political Psychology 400
Mapping the Stars: Celebrity, Metonymy, and the Networked Politics of Identity 400
Visceral obesity is associated with clinical and inflammatory features of asthma: A prospective cohort study 300
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
Engineering the boosting of the magnetic Purcell factor with a composite structure based on nanodisk and ring resonators 240
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3838008
求助须知:如何正确求助?哪些是违规求助? 3380253
关于积分的说明 10513110
捐赠科研通 3099862
什么是DOI,文献DOI怎么找? 1707244
邀请新用户注册赠送积分活动 821558
科研通“疑难数据库(出版商)”最低求助积分说明 772744