Learning Epistasis and Residue Coevolution Patterns: Current Trends and Future Perspectives for Advancing Enzyme Engineering

共同进化 上位性 计算机科学 背景(考古学) 蛋白质测序 蛋白质工程 人工智能 序列空间 合成生物学 定向进化 数据科学 机器学习 计算生物学 生物 理论计算机科学 生态学 遗传学 生物化学 肽序列 数学 基因 巴拿赫空间 突变体 古生物学 纯数学
作者
Marcel Wittmund,Frédéric Cadet,Mehdi D. Davari
出处
期刊:ACS Catalysis [American Chemical Society]
卷期号:12 (22): 14243-14263 被引量:35
标识
DOI:10.1021/acscatal.2c01426
摘要

Engineering proteins and enzymes with the desired functionality has broad applications in molecular biology, biotechnology, biomedical sciences, health, and medicine. The vastness of protein sequence space and all the possible proteins it represents can pose a considerable barrier for enzyme engineering campaigns through directed evolution and rational design. The nonlinear effects of coevolution between amino acids in protein sequences complicate this further. Data-driven models increasingly provide scientists with the computational tools to navigate through the largely undiscovered forest of protein variants and catch a glimpse of the rules and effects underlying the topology of sequence space. In this review, we outline a complete theoretical journey through the processes of protein engineering methods such as directed evolution and rational design and reflect on these strategies and data-driven hybrid strategies in the context of sequence space. We discuss crucial phenomena of residue coevolution, such as epistasis, and review the history of models created over the past decade, aiming to infer rules of protein evolution from data and use this knowledge to improve the prediction of the structure–function relationship of proteins. Data-driven models based on deep learning algorithms are among the most promising methods that can account for the nonlinear phenomena of sequence space to some degree. We also critically discuss the available models to predict evolutionary coupling and epistatic effects (classical and deep learning) in terms of their capabilities and limitations. Finally, we present our perspective on possible future directions for developing data-driven approaches and provide key orientation points and necessities for the future of the fast-evolving field of enzyme engineering.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
hif1a发布了新的文献求助10
1秒前
Julia发布了新的文献求助10
1秒前
2秒前
2秒前
JamesPei应助panglei采纳,获得10
2秒前
小丸子完成签到,获得积分10
2秒前
Fiona完成签到,获得积分10
2秒前
abbyi完成签到,获得积分10
3秒前
支妙完成签到,获得积分10
3秒前
summer-ray发布了新的文献求助10
4秒前
垚焱完成签到,获得积分10
5秒前
qxqy6678完成签到,获得积分10
5秒前
崔硕硕完成签到,获得积分10
5秒前
Gavin发布了新的文献求助10
5秒前
小泓完成签到,获得积分10
6秒前
YY发布了新的文献求助10
6秒前
7秒前
7秒前
细腻柜子完成签到,获得积分10
8秒前
8秒前
闪闪飞机完成签到,获得积分10
8秒前
9秒前
桔子不笑完成签到,获得积分10
9秒前
9秒前
crina完成签到,获得积分10
10秒前
10秒前
日子平平淡淡完成签到,获得积分10
10秒前
10秒前
11秒前
Lucas应助fsy采纳,获得10
11秒前
11秒前
zhouqy8完成签到,获得积分10
11秒前
啤酒人完成签到,获得积分10
11秒前
可口可乐发布了新的文献求助10
11秒前
12秒前
hif1a完成签到,获得积分10
12秒前
sugkook发布了新的文献求助10
12秒前
阿柒发布了新的文献求助10
13秒前
kevindeng完成签到,获得积分20
13秒前
自由寄柔完成签到,获得积分10
13秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Mobilization, center-periphery structures and nation-building 600
Technologies supporting mass customization of apparel: A pilot project 450
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3792936
求助须知:如何正确求助?哪些是违规求助? 3337536
关于积分的说明 10285691
捐赠科研通 3054189
什么是DOI,文献DOI怎么找? 1675858
邀请新用户注册赠送积分活动 803846
科研通“疑难数据库(出版商)”最低求助积分说明 761578